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Abstract

Lip Reading as an Active Mode of Interaction with Computer Systems

by

Laxmi Pandey

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Merced

Assistant Professor Ahmed Sabbir Arif, Chair

Interacting with computer systems with speech is more natural than conventional interaction
methods. It is also more accessible since it does not require precise selection of small targets
or rely entirely on visual elements like virtual keys and buttons. Speech also enables contact-
less interaction, which is of particular interest when touching public devices is to be avoided,
such as the recent COVID-19 pandemic situation. However, speech is unreliable in noisy
places and can compromise users’ privacy and security when in public. Image-based silent
speech, which primarily converts tongue and lip movements into text, can mitigate many of
these challenges. Since it does not rely on acoustic features, users can silently speak without
vocalizing the words. It has also been demonstrated as a promising input method on mobile
devices and has been explored for a variety of audiences and contexts where the acoustic sig-
nal is unavailable (e.g., people with speech disorders) or unreliable (e.g., noisy environment).
Though the method shows promise, very little is known about peoples’ perceptions regarding
using it, their anticipated performance of silent speech input, and their approach to avoiding
potential misrecognition errors. Besides, existing silent speech recognition models are slow
and error prone, or use stationary, external devices that are not scalable. In this dissertation,
we attempt to address these issues. Towards this, we first conduct a user study to explore
users’ attitudes towards silent speech with a particular focus on social acceptance. Results
show that people perceive silent speech as more socially acceptable than speech input but are
concerned about input recognition, privacy, and security issues. We then conduct a second
study examining users’ error tolerance with speech and silent speech input methods. Results
reveal that users are willing to tolerate more errors with silent speech input than speech in-
put as it offers a higher degree of privacy and security. We conduct another study to identify
a suitable method for providing real-time feedback on silent speech input. Results show that
users find an abstract feedback method effective and significantly more private and secure
than a commonly used video feedback method. In light of these findings, which establish
silent speech as an acceptable and desirable mode of interaction, we take a step forward to
address the technological limitations of existing image-based silent speech recognition mod-
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els to make them more usable and reliable on computer systems. Towards this, first, we
develop LipType, an optimized version of LipNet for improved speed and accuracy. We then
develop an independent repair model that processes video input for poor lighting conditions,
when applicable, and corrects potential errors in output for increased accuracy. We then test
this model with LipType and other speech and silent speech recognizers to demonstrate its
effectiveness. In an evaluation, the model reduced word error rate by 57% compared to the
state-of-the-art without compromising the overall computation time. However, we identify
that the model is still susceptible to failure due to the variability of user characteristics. A
person’s speaking rate, for instance, is a fundamental user characteristic that can influence
speech recognition performance due to the variation in acoustic properties of human speech
production. We formally investigate the effects of speaking rate on silent speech recogni-
tion. Results revealed that native users speak about 8% faster than non-native users, but
both groups slow down at comparable rates (34–40%) when interacting with silent speech,
mostly to increase its accuracy rates. A follow-up experiment confirms that slowing down
does improve the accuracy of silent speech recognition. The method yields the best accu-
racy rate when speaking at 0.75x of the actual speaking rate. These findings highlight the
importance of considering speaking rate in silent speech-based interfaces. Finally, we evalu-
ate the effectiveness of the modality in an actual computer system. Particularly, we study
the feasibility of using silent speech as a hands-free selection method in eye-gaze pointing
on computer systems. Results revealed that silent speech is significantly better than other
hands-free selection methods, namely dwell and speech, in terms of performance, usability,
and perceived workload.
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Chapter 1

Introduction

Speech input, an audio-based language processing method that converts acoustic features
into text, is one of the most natural and efficient ways to interact with computer systems.
It is also more accessible as it does not require precise selection of small targets or rely
entirely on visual elements like virtual keys and buttons [248]. Speech also enables contactless
interaction, which is of particular interest when touching public devices is to be avoided, such
as the recent COVID-19 pandemic situation. In addition, it can potentially improve user
comfort and productivity when traditional input methods, like touch and keyboards, are
inefficient, difficult, or inconvenient to use. It allows, for example, people with limited motor
skills to interact with mobile devices without using their hands. It is also beneficial to
people with Situationally-Induced Impairments and Disabilities (SIID), where the hands are
incapacitated due to reasons such as performing a secondary task, wearing gloves, or minor
injuries. It also facilitates eyes-free interaction on mobile devices, especially for visually
impaired users.

Despite its advantages and proven effectiveness, there are many scenarios where speech is
not a viable mode of communication. First, the surroundings may not be favorable for speech-
based communication: a person could be near a busy market or in a crowded restaurant
where the surrounding noise makes speech difficult to recognize. Second, a person may not
wish to speak out loud because of privacy and security concerns or could be in a public
setting where others do not want to be disturbed, such as in a library or museum. Finally,
and most importantly, many people have difficulties in speaking or are unable to speak
entirely due to a range of speech and neurological disorders. Although many augmentative
and alternative communication (AAC) devices are available to help them vocalize, these
devices produce unnatural sounding vocalization. This prevents users from communicating
effectively with other humans and technologies like voice-controlled virtual assistants. This
demand developing better communication methods, particularly for mobile devices, that can
improve these populations’ access to fellow humans and recent technological advancements.

A system that can understand speech by visually interpreting the movements of the
speaker’s lips, known as lip reading or silent speech recognition (Fig. 1.1), can mitigate
many of the these challenges. We envision several benefits of using silent speech over speech.
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This is a very good idea

Visual Recording Lip Landmarks Processing Recognized TextSilent Input

Figure 1.1: An overview of silent speech recognition system: Automatic segmentation of lip
sequences and its classification into text with an end-to-end deep neural network.

First, silent speech does not rely on acoustic features, thus can be used in noisy places.
Second, silent speech is an unspoken form of communication, hence can largely alleviate the
issues surrounding personal privacy and social norms in public environment. Third, silent
speech is more inclusive since it can be used by people who cannot vocalize. Researchers
explored different video-based [5, 25, 58, 56] and advanced sensor-based [213, 223, 238, 281]
recognition methods where they showed relatively high accuracy in speech recognition with
silent speech input. A recent work [276] explored silent speech input on mobile devices, where
users expressed a higher level of satisfaction with this input method over the tradition speech
input. In spite of its advantages, very little is known about peoples’ perceptions regarding
using it, especially in terms of social acceptance that could influence users’ willingness to
use this input method. Prior research showed that social acceptability has a significant
implication for technological acceptance as it is directly connected to peoples’ preferences on
using new technologies [282, 160]. In addition, several key questions remain unknown that
could influence users’ attitude towards using the method. For instance, researchers showed
that silent speech input could be prone to high error rates [174, 232, 211, 74]. Consequently,
silent speech recognition accuracy could be a key factor in adopting the method. However,
little is known of users’ error tolerance level for silent speech input. Additionally, silent
speech input recognition on mobile devices depends primarily on capturing users’ tongue
and lip movements via the front camera. Thus, providing appropriate real-time feedback
on input recognition is critical for the acceptance of the method. Therefore, to inform the
design of silent speech-based interfaces, it is necessary to investigate the error tolerance and
suitable feedback mechanism for silent speech input.

Several algorithms and modeling techniques have been proposed for silent speech recog-
nition. Researchers explored different sensor-based [213, 223, 238, 281] recognition methods,
many of which use expensive, invasive, and non-portable hardware, including electromag-
netic articulography (EMA) [87, 99, 120], real-time magnetic resonance imaging (rtMRI)
[219], electroencephalogram (EEG) [231], electromyography (EMG) [150, 291, 146, 145, 147,
189, 254], ultrasound imaging [156, 90, 73, 72, 129, 130, 99, 120], vibrational sensors of glot-
tal activity [213, 223, 238, 281], speech motor cortex implants [32], and non-audible murmur
(NAM) microphone [122, 208, 121]. These methods use invasive, impractical, non-portable
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setups, impeding their scalability in real-world scenarios. More recently, attempts have been
made to enable silent speech communication using video-based recognition, referred to as
lip reading [5, 25, 58, 56, 57, 275, 57, 36, 14, 59, 229, 276]. Video-based silent speech input
methods could be more user friendly and appropriate in private and public settings since it
can be used without any wearable devices. Existing video-based speech recognition models,
however, are slow (takes about 5 seconds to recognize one word) and error prone (4–47%
error rate). In addition, research found that silent speech performance is highly dependent
on extraneous factors, including uncontrolled lighting, blur, low resolution, compression ar-
tifacts, occlusions, viewing angles, etc. However, most of the factors can be mitigated by
replacing the hardware (blur, low-resolution, compression artifacts, etc.) or by the user (oc-
clusions, viewing angles, etc.). Lighting, in contrast, is one of the factors that cannot always
be controlled. Not accounting for this in a vision-based speech recognition compromises its
fairness and reduces its applicability in real-world scenarios. We believe, a model that does
not suffer from these shortcomings could potentially be used as a medium for input and
interaction with various computer systems, incorporated in day-to-day usage.

Research also shows that no matter how robust the speech recognition system is, it could
still fail due to variabilities in user characteristics, such as high disfluency, non-canonical
pronunciation, accents, speaking rate, and acoustic and prosodic variability [101]. To avoid
potential speech misrecognition, users often monitor their behaviors to adjust and optimize
future task performance according to experienced errors or conflicts [21, 292, 250]. They
engage themselves in processes of repairing the errors by either reformulation, simplification,
or hyperenunciation [168, 181, 207, 142, 176, 225]. However, peoples’ approach to silent
speech input to avoid potential misrecognition is unknown. Speaking rate is a fundamental
user characteristics that can influence speech recognition performance due to the variation
in acoustic properties of human speech production, such as vowel and consonant duration,
the transition between phoneme and stops, and distortions in the temporal and spectral
domains [101, 91, 305]. Some studies report that faster speaking rates result in higher error
rates [91, 261, 265, 201], whereas some identified slower speaking rates to be more error prone
[101, 266]. This disagreement encourages re-investigation of the effects of speaking rates on
speech recognition performance. Besides, no such investigations have been conducted for
silent speech recognition. The findings from such an investigation could provide guidance to
users on improving their speech and silent speech input performance.

As of yet, we have focused on understanding the acceptability and usability of silent
speech input and how to make it more accurate and efficient. However, to the best of our
knowledge, no one has yet investigated the possibility of using silent speech with computer
systems. We took a step forward by introducing silent speech as an alternative hands-
free selection method for eye-gaze pointing. It could be advantageous to use silent speech
since silent speech does not require external hardware, rather both eye tracking and speech
recognition can occur through the same webcam.
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1.1 Contributions

This dissertation makes the following contributions:

• First, we conduct an online survey to explore users’ attitudes towards the speech and
silent speech input methods with a particular focus on social acceptance. The survey
examined social acceptance of these methods considering different factors, including
users’ and viewers’ perspectives towards using these in different locations and in front
of different audiences. The results suggest that social acceptability for the two in-
put methods from users’ and viewers’ perspectives were different across locations as
users considered the less noticeable input method (i.e., silent speech) as their preferred
method to interact with mobile devices.

• Second, we conduct user studies to explore users’ attitude towards recognition errors
associated with speech and silent speech input methods. Results reveal that users
are willing to tolerate more errors with silent speech input than speech input as it
offers a higher degree of privacy and security. Inspired by the findings, we conduct
another study to investigate suitable feedback method for silent speech input. Results
show that users find both a commonly used video and an abstract (i.e., a blinking
dot) feedback effective but the latter significantly more private, more secure, and less
intrusive than the video feedback. Then, based on the findings, we propose a set of
recommendations for using silent speech input on mobile devices.

• Third, we develop LipType, an optimized silent speech recognition model for improved
speed and accuracy. LipType demonstrated a significant improvement in the per-
formance of state-of-the-art silent speech recognition model. Results revealed 46.9%
reduction in word error rate, 39.1% increase in words per minute, and 8.6 seconds
reduction in computation time.

• Fourth, we develop an independent repair model that processes video input for poor
lighting conditions, when applicable, and corrects potential errors in output for in-
creased accuracy. In an evaluation, the repair model demonstrated its effectiveness
with various speech and silent speech recognition models. On average, speech and
silent speech models showed 32% and 57% reduction in word error rates, respectively,
without severely compromising the overall computation time.

• Fifth, we explore whether native and non-native speakers interact differently with
speech and silent speech-based methods, whether speaking rate affects recognition
rates of these methods, the optimal speaking rates for increased accuracy, and whether
the effects of speaking rate are different for native and non-native speakers. Results
revealed that native users speak about 8% faster than non-native users, but both
groups slow down at comparable rates (34–40%) when interacting with these methods,
mostly to increase their accuracy rates. A follow-up study confirms that slowing down
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does improve the accuracy of these methods. Both methods yield the best accuracy
rates when speaking at 0.75x of the actual speaking rate. A post-hoc error analysis
revealed that speech and silent speech methods and native and non-native speakers are
susceptible to different types of errors.

• Finally, we investigate silent speech as an alternative selection method for eye-gaze
pointing. Towards this, we propose a stripped-down silent speech recognition model
that can recognize a small number of silent commands almost as fast as state-of-the-art
speech recognition models. Second, we design a silent speech-based selection method
and compare it with other hands-free selection methods, namely dwell and speech, in
a Fitts’ law study. Results revealed that speech and silent speech are comparable in
throughput and selection time, but the latter is significantly more accurate than the
other methods. We follow-up on this by conducting another study investigating the
most effective screen areas for eye-gaze pointing in terms of throughput, pointing time,
and error rate. Results revealed that target selection around the center of a display is
significantly faster and more accurate, while around the top corners and the bottom
are slower and error prone. Finally, we design a silent speech-based menu selection
method for eye-gaze pointing and evaluate it in an empirical study. A study revealed
that it significantly reduces task completion time and error rate.

1.2 Brief Outline

This dissertation begins with a review of topics that received much attention in the speech-
language processing and human-computer interaction research communities, including speech
input, silent speech input, social acceptance of technology, silent speech recognition, effects of
speaking rate, low-light image enhancement, recognition error correction, hands-free selection
methods, and gaze-based menu selection. It then explores the social acceptance of speech
and silent speech input in different social contexts in Chapter 3. Chapter 4 investigates the
user tolerance of recognition errors in the speech and silent speech input methods, followed
by identifying suitable feedback mechanism for silent speech input. Chapter 5 develops and
validates LipType, an optimized silent speech recognition model for improved speed and
accuracy. Chapter 6 develops an independent repair model accounting for poor lighting
conditions and potential recognition errors. Chapter 7 explores whether native and non-
native speakers interact differently with speech and silent speech-based methods, whether
speaking rate affects recognition rates of these methods, the optimal speaking rates for
increased accuracy, and whether the effects of speaking rate are different for native and
non-native speakers. Chapter 8 studied the feasibility of using silent speech as a hands-free
selection method in eye-gaze pointing. Finally, Chapter 9 concludes this dissertation and
speculates on future research opportunities.
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Chapter 2

Related Work

This work intersects with the following areas of interest: speech input, silent speech input,
social acceptance of technology, silent speech recognition, effects of speaking rate, low-light
image enhancement, recognition error correction, hands-free selection methods, and gaze-
based menu selection.

2.1 Speech Input

Speech input enabled devices, such as personal voice assistants, allow users to communicate
with computer systems using speech commands. Personal voice assistants like Siri, Google
Assistant, Alexa, and Cortana can interpret human speech and handle a wide variety of
tasks [127, 177]. Such speech interfaces can potentially improve productivity and user com-
fort when traditional input methods, like touch and keyboards, are inefficient, difficult, or
inconvenient to use [248, 116]. Yet, users of speech input are usually unsatisfied with the
quality of interaction due to low recognition accuracy [74]. To avoid potential errors, users
tend to modify their speaking styles and patterns [168, 181, 207, 142, 176, 225] by shortening
their sentences [153, 225], performing repetition [40, 55], increasing the volume [81, 44], and
hyper-articulating [217]. However, studies showed that automatic speech recognition (ASR)
can fail even when these strategies are applied due to high levels of disfluency, non-canonical
pronunciation, accent, speaking rate, and acoustic and prosodic variability [101]. [179] re-
ported that recognition is worse for words that are phonetically similar to other words than
for highly distinctive words. [261] found out that longer words have slightly lower error
rates than shorter words. [126] showed that infrequent words are more likely to be misrecog-
nized. A different research found a correlation between large fluctuations in the short-term
speaking rate and high recognition errors [15]. Another work reported that male speakers
have significantly higher recognition error rates than female speakers due to higher rates of
disfluency [3]. Relevantly, misrecognized words were found to have higher pitch and energy
than correctly recognized words [123]. Another study revealed that words with more possible
pronunciations have higher error rates and longer words have slightly lower error rates [101].
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Recently, research has mostly focused on improving the performance of speech input
by developing robust speech recognition models [194, 255, 304], language models [31, 13]
and voice controlled systems [310]. [63] provides a comprehensive review of the literature on
speech-based input and interaction methods. With the recent advances in speech recognition
technology [106, 2, 230, 234, 260], today’s voice-based commercial products [307, 298, 115, 46,
158, 298, 297] can perform streaming, high-accuracy, low-latency speech recognition [28, 172]
to revolutionize human-computer interaction [63]. Recently, [118] presented an end-to-end
speech recognizer for on-device speech recognition using a recurrent neural network, which
has been deployed in the default Google keyboard on the flagship Pixel phones. Despite its
popularity, studies show privacy and security concerns for the use of personal voice assistants
and voice search commands in public places [82, 85, 83, 235]. A survey1 revealed that 39%
smartphone users use the built-in voice assistants at home but only 6-14% use these in public
[228]. To uphold the privacy and security of users, researchers explored whisper input, which
is a variant of speech input with a significantly lower energy than normal speech. These works
detected whispered speech using a stethoscopic microphone that contacts the skin behind
the ear [208], a throat microphone [148], and a non-contact microphone by placing it very
close to the front of the narrowly opened mouth [93]. Recently, Amazon included a whisper
mode to their personal voice assistant Alexa2. When users whisper to Alexa, it whispers
back to them. Some have also incorporated state-of-the-art machine learning techniques to
improve the performance of whisper speech recognition [97, 108, 96]. However, whispers with
a much lower acoustic power and relatively flat spectrum than regular speech are inherently
noise-like, thus are highly susceptible to acoustic interference [195]. Moreover, long-term use
of whisper voice might have negative effects on our vocal cords [249].

2.2 Silent Speech Input

Silent speech input enables users to communicate with a computer system using speech com-
mands without the need for producing any audible sound. Unlike speech input, silent speech
input can be effective when speaking audibly could disturb others or disclose confidential
information, to understand elderly and children speech, and to provide people with speech
and motor impairments access to computer systems. There have been several previous at-
tempts at achieving silent speech communication. Many have explored silent speech enabled
input and interaction methods that use different sensors (e.g., electromagnetic articulog-
raphy (EMA) [87, 99, 120], electroencephalogram (EEG) [231], electromyography (EMG)
[291, 146, 145, 147, 189, 254], ultrasound imaging [156, 90, 73, 72, 129, 130, 99, 120], vi-
brational sensors of glottal activity [213, 223, 238, 281], speech motor cortex implants [32],
and non-audible murmur (NAM) microphone [122, 209, 121]) to recover the speech con-
tent produced without vibration of the vocal folds, by detecting tongue, facial, and throat
movements. Some have developed intracortical microelectrode Brain-Computer Interfaces

1Fortune, https://fortune.com/2016/06/06/siri-use-public-apple/
2Digital Trends, https://www.digitaltrends.com/home/how-to-enable-whisper-mode-on-alexa

https://fortune.com/2016/06/06/siri-use-public-apple/
https://www.digitaltrends.com/home/how-to-enable-whisper-mode-on-alexa
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(BCI) to predict user’s intended speech information directly from the brain activities in-
volved in the speech production mechanism [47, 71, 231, 277, 278]. Some have also used
multimodal imaging systems for speech recognition, focusing mainly on tongue visualization
[130]. A recent work developed a wearable interface that places five EMG sensors above the
face to capture the neuromuscular signals for silent speech recognition [150]. Most of these
works, however, use invasive, impractical, non-portable setup, impeding their scalability in
real-world scenarios.

More recently, attempts have been made to enable silent speech communication using
video-based recognition, referred to as lip reading [5, 25, 58, 56, 57, 275, 57, 36, 14, 59,
229]. For example, a work provided smartphone users access to their phone functionalities
through silent speech commands [276]. It used the front camera of a smartphone to capture
the motion of the mouth, then recognized the silently spoken commands using deep-learning-
based image sequence recognition technology. These works suggest that video-based silent
speech input method could be more user friendly and appropriate in private and public
settings since it can be used without any wearable devices.

Despite these improvements, research found that silent speech could be error-prone due to
its dependence on extraneous factors like lighting, skin complexion, posture, head rotation,
and facial expression [144, 272, 211, 41]. In recent investigations, users reported a higher
level of satisfaction using this method than speech input in some scenarios [276]. Having a
model that mitigates the above challenges can widen its usability in more scenarios, allowing
input and interactions on private devices without the hands, and on public devices without
direct contact as in the COVID-19 situation. It can also help people with speech disorder,
muteness, and blindness to input and interact with computer systems, increasing their access
to technologies.

2.3 Social Acceptance of Technology

Previous research has explored social acceptability for body-based and device-based gestures
[242, 243, 246], around device input [8], head-mounted display (HMD) input [10], and com-
panion drones for blind people [26] in lab or public settings. In a recent work, [30] explored
the social acceptability of speech input, which revealed that location influences users’ willing-
ness to use the method in public spaces. However, no prior study has explored user attitudes
and acceptance of using silent speech input. In a different research, [9] investigated whether
social acceptability studies can be conducted on crowdsourced platforms. They showed that
crowdsourced platforms could be an alternative to conducting laboratory-style studies for
examining social acceptability. Inspired by this work, we conducted our social acceptability
study via crowdsourcing.

Prior research also showed that social acceptability has a significant implication for tech-
nological acceptance as it is directly connected to peoples’ preferences on using new technolo-
gies [282, 160]. To examine the social acceptance of new technologies, researchers conducted
studies from users’ perspective and/or viewers’ perspective [8, 242, 243, 10]. To investigate
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users’ perspective, researchers either provided participants with a first-hand experience using
a new technology or showed them video clips on how the technology could potentially be used
[8]. Later, participants were asked to consider themselves as users of the technology and ex-
press their opinion on using it in different contexts. While there are many social acceptability
studies conducted from the users’ perspective, less attention has been paid to examine social
acceptance from viewers’ standpoints. A few studies investigated social acceptance from the
viewers’ perspective where researchers elicited opinions from people watching others using
a new technology in different contexts. [203] showed that considering viewers viewpoint is
important, especially when using the technology in public places, as users’ interactions with
the technology might draw bystanders’ (or the viewers’) unwanted attention. Consequently,
viewers’ perspective are explored for wearable e-textile interface [237, 236], Augmented Re-
ality (AR) in public space [75], and public interfaces (e.g., public performance act) [241].
Additionally, some studies considered both the users’ and the viewers’ perspectives while
evaluating the social acceptance of new technologies, such as gestural interaction on mobile
devices [203], head-worn devices [161, 9, 10, 180], data glass [162], and around device input
methods [8]. These studies were commonly conducted by examining observers’ impression
on watching other people interacting with a technology — either in a real-world setting or
in a video. In this work, we examined the social acceptability of speech and silent speech
input from both users’ and viewers’ perspectives.

2.4 Silent Speech Recognition

There is a rich literature on silent speech recognition. Here, we only discuss the works that
are closely related to ours (see [312] for a comprehensive review). Recently, there have been
attempts to apply deep learning to silent speech recognition [58, 56, 275, 57, 36, 14, 59].
However, most of these approaches perform only at phoneme- or word-level. [163] trained an
image classifier using convolutional neural network (CNN) to differentiate between visemes3

on a sign language dataset of signers mouthing words. [215] also used CNN to predict
phonemes in spoken Japanese. [280] used deep bottleneck features (DBF) to encode shallow
input features, such as latent dirichlet allocation (LDA) and GA-based informative feature
(GIF) [283] for word recognition. [229] also used DBF to encode every video frame and
trained a long short-term memory (LSTM) classifier for word-level classification. [290], on
the other hand, used an LSTM with histogram of oriented gradient (HoG) input features to
recognize words. [58] developed CNN architectures for classifying multi-frame time series of
lip movements. LipNet [25] is an end-to-end model for phrase-level lip reading by predicting
character sequences (further discussed in a later section). [5] also enabled phrase-level lip
reading by utilizing an encoder-decoder structure with multi-head attentions. [60] developed
the Watch, Listen, Attend and Spell (WLAS) network that uses dual attention mechanism
for visual attention to transcribe videos of mouth motion to characters.

3Visemes are visual equivalent of phonemes. A viseme represents the position of the face and mouth
when making a sound.
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2.5 Effects of Speaking Rate

Different speaking rates can significantly affect speech recognition performance due to a
distorted spectrum caused by variations in speaking rate [101, 91, 305]. Natural speaking
rate depends on user characteristics like gender, age, accents, and psychological state. [303]
showed that older people speak slowly compared to young adults, and women talk slower
than men. [240] reported that people usually speak fast when in a hurry or angry, and slow
when they are tired, sad, or sick. Studies also showed that non-native speakers talk much
slower [109] and exhibit more variation in speaking rate than native speakers [27]. How-
ever, suprasegmental characteristics between native and non-native speakers in spontaneous
speech suggest that non-native speakers are less variable than native speakers [204], which
can affect recognition rate [222], particularly for non-native speakers [296, 70, 24]. However,
the research community is divided on how speaking rate affects recognition accuracy. Some
associated faster speech with higher error rates [91, 261, 265, 201], while others found slow
speech to be more error-prone [101, 266].

2.6 Low-Light Image Enhancement

The problems of underexposed low-light images are very common, solutions to mitigate it
have been a popular research topic. Researchers have developed a variety of techniques
that can improve image quality. The classical image enhancement methods involve two
categories: i) retinex-based methods, which are based on retinex theory [169]. Recent exam-
ples of these approaches are Lime [110], naturalness preserved enhancement [293], Retinex
[143], and simultaneous reflectance and illumination estimation [92]. ii) histogram equal-
ization methods, which manipulate the gray levels of individual pixels based on the image
histogram. Recent examples include contextual and variational contrast enhancement [50],
weighted thresholded histogram equalization [17], and layered difference representation [170].
In recent years, several methods based on deep learning image processing techniques have
been proposed. One successful example is the developed pipeline for processing low-light
images, based on end-to-end training of a fully-convolutional network [52]. However, they
reported that their model showed imperfect results for humans faces. Another work [294]
utilizes encoder-decoder network to achieve the low-light enhancement for real under ex-
posed images. Other works [299, 4, 173] have also showed the effectiveness of deep learning
methods on low light image enhancement.

2.7 Recognition Error Correction

Automatic detection and correction of recognition errors have become an important research
area. The aim is to automatically detect and partially or fully correct errors, regardless of
the recognition system used. Zhou et al. [311] addressed the issue of error detection in
recognition systems using data-mining classifiers such as naive Bayes (NB), neural networks
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(NN), and support vector machines (SVM). These classifiers were trained to identify errors
using confidence scores and linguistic information present in the recognized output. Another
work [12] proposed extraction of additional features from the confusion networks to estimate
correctness probability using logistic regression. Pellegrini et al. [227] investigated the
use of a Markov chains (MC) classifier with two states: error state and correct state, to
model errors. Chen et al. [54] proposed a system for error detection in conversational
spoken language translation. This system uses additional features provided as the feedback of
statistical machine translation (SMT), including SMT confidence estimates, posteriors from
named entity detection (NED), and an automated word boundary detector to verify the word
boundaries of recognition output, in order to improve error detection and correction. Sarma
et al. [252] built a recognition error detector and corrector using co-occurrence analysis.
In the same context, Bassil and Semaan [33] proposed a post-editing ASR error correction
method based on Microsoft N-Gram dataset for detecting and correcting spelling errors
generated by recognition systems. The detection process detects on-word spelling errors in
reference with the Microsoft N-Gram dataset, and the correction process generates correction
suggestions for the detected word errors by selecting the best candidate for the correction
using contextual information. Other works [226, 259, 94, 175] have explored a non-decoder
based post-processing error detection and correction.

2.8 Hands-Free Selection Methods

There is a rich body of work on selection methods for gaze pointing. Most of these works,
however, explore manual approaches that require the use of the hands, particularly mid-air
gesture (e.g., [51, 233, 247]) and physical keys, buttons, and controllers (e.g., [167, 287, 206,
166]). In this section, we only cover hands-free selection methods that are accessible to
people with limited motor skills.

Dwell is the most commonly used hands-free selection method in gaze pointing. It enables
users to look at a target for a predetermined period of time to trigger selection [112]. This
method is popular due to its simplicity and because it does not require the use of additional
sensors like microphones, depth cameras, or motion sensors. However, it is difficult to
maintain a sensible balance between speed and accuracy when selecting a dwell time. A
short dwell time makes a system faster but increases the chance of unwanted selections,
while a long dwell time makes the system slower and can cause users physical and cognitive
stress [37, 112]. To address this, several works have enabled users to adjust the dwell time
[190] or automatically adjusted dwell time based on user experience [271, 205]. While these
approaches improved the performance of dwell, it remains a time-consuming and error prone
selection method in gaze pointing.

Many alternatives have been proposed to substitute dwell. [80] explored gaze gestures
with eye tracking, where users performed specific eye movements for target selection. Studies
suggested users can perform complex gaze gestures intentionally [80, 131]. A follow-up study
showed that gaze gestures can enable people with motor impairments to play online games
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[135]. Some have used specific types of gaze gestures (e.g., reverse crossing [88] and single gaze
gestures [202]) and blinking [23] for target selection. However, performing intentional gaze
gestures and blinking are unnatural [138], thus can cause users irritation and fatigue. Several
works, in contrast, studied target selection through voluntary facial muscle activation [279,
193], brain signals [125], and foot pedals [198]. These methods use external and invasive
hardware, thus not yet scalable in practical situations. Some have also attempted head
gestures for target selection [264, 263, 198], which performed well in short-term use, but can
cause fatigue in extended use. Many have combined gaze with speech, which is potentially
a more natural and efficient mode of interaction [268, 221]. These works either use a single
command to confirm selection [38] or multiple commands to facilitate both pointing and
selection [257, 200]. Speech is promising but unreliable in noisy places and users are often
hesitant to use speech in public places [82, 86, 84, 235]. Besides, speech does not work well
with people with severe speech disorder [7, 43].

2.9 Gaze-Based Menu Selection

Not much work has focused on gaze-based menu selection methods. Menu selection is dif-
ferent than individual target selection (e.g., virtual keys, buttons, or links) since the former
involves the selection of a sequence of horizontal and vertical targets. Error in one selection
task results in an incorrect output, forcing the user to correct the mistake, then re-perform
all tasks in the sequence. Menu selection, thus, has a much higher error correction overhead.
Almost all gaze-based menu selection methods use a “zooming” approach that dynamically
increases the size of a potential target to facilitate precise selection [270, 267, 35, 199]. These
methods, however, do not provide an effective mechanism for controlling the zooming behav-
ior, which can cause frustration when the method does not behave as expected. Expanding
the menu items can also occlude the content in the background, causing inconvenience. [206]
positions the cursor at the center of a target by suppressing cursor movements caused by
involuntary eye movements. [149] enable users to select a target my making a “click” sound
when the cursor is over it. [206] enable users to speak the items in a menu to select them.
Some also explored different menu designs (e.g., radial, semi-circular, etc.) for gaze pointing
[149, 284].
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Chapter 3

Acceptability of Speech and Silent
Speech in Private and Public

This Chapter presents a user study exploring users’ attitudes towards speech and silent
speech input methods with a particular focus on social acceptance. We conduct a crowd-
sourced study examining social acceptance of these methods considering different factors,
including users’ and viewers’ perspectives towards using these in different locations and in
front of different audiences. Results show that, in general, people prefer using silent speech
input over traditional speech input.

3.1 Social Acceptability

In this study, we will examine the social acceptability of speech and silent speech input from
both users’ and viewers’ perspectives.

3.1.1 Input Modalities

Researchers have explored a number of voice and non-voice input modalities to interact
with mobile devices. For instance, they investigated using speech and silent speech input
methods that range from noticeable to inconspicuous [310, 87, 146, 156, 223, 47, 276].
Speech or voice input, which is commercially available on smartphones, requires users to
make voice commands to send instructions to mobile devices. This input modality is explicit
and commonly draws co-located observers’ attention due to the nature of its input visibility
— thus can make users feel awkward or uncomfortable with the presence of nearby users.
On the other hand, silent speech input, which recognizes speech without requiring users to
make acoustic signals, interprets users’ commands on smartphones by tracking tongue and
lip movements. This input method is more subtle than the speech input, and used when
acoustics is not an option (e.g., speech-impaired people) or it is undesired (e.g., during a
confidential conversation or communication in public places). On one hand, using explicit
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input modalities can convey clear instructions to the devices; however, this form of input
might be less socially acceptable due to the visibility to co-located people. On the other hand,
subtle inputs are less explicit; however, co-located observers might not readily interpret these
commands, making the interaction more acceptable. Therefore, we first conduct a study to
explore the social acceptability of these two input modalities.

3.1.2 Crowdsourced Study

As discussed in the related work, researchers explored social acceptability for a wide range
of input modalities, such as smartphone gestures [246, 242, 243], around-device interaction
[8], and hand-to-face input methods [258, 171]. They used two common approaches: (i)
allowing participants to use the technology in a particular context (e.g., public places) and
(ii) showing participants videos of how the technique can be used. To collected feedback,
participants are commonly asked to imagine using it in other contexts (e.g., workplace) and
provide their feedback on a 5-point Likert scale. Due to the spread of COVID-19, we were
unable to recruit participants to run a study in a public place. Thus, we used the second
approach for our study.

Crowdsourcing platforms have now become increasingly popular to conduct HCI user
studies [9, 10]. They provide researchers with an easy access to large and diverse groups of
participants. Additionally, these platforms have been considered as cost-efficient solutions
to run user studies remotely. Though there has been concern about the data quality from
crowdsourced studies, researchers have taken certain measures to remove outliers, which
have been almost as effective as laboratory or field studies [39, 104, 9, 10]. Consequently, we
decided to use crowdsourcing platforms to run our first study.

3.1.3 Online Survey

We created an online survey with Qualtrics to collect responses from participants. Figure 3.2
shows a sample of questions from the survey. We divided the survey questions into four sec-
tions: (i) Demographics : 14 questions to collect demographic information (e.g., age, gender)
and prior experience (e.g., experience with smartphones and voice input) from participants;
(ii) Users’ perspectives : 6 questions asking users to share their experience of using speech
and silent speech input methods by considering themselves as users of the modalities; (iii)
Observers’ perspectives : 6 questions were used to explore observers’ perspective, i.e., seeing
other people using the input modalities and (iv) Overall preference: 6 questions asking par-
ticipants to provide their overall preference of using the input modalities on mobile devices.
These questions were designed using both open-ended questions, single/multiple-choice ques-
tions, and 5-point Likert scale questions. The open-ended questions were used to collect
descriptive responses (e.g., justifying their response to a question), while the other types
of question were used to collect their preference/perception of using the input modalities
and demographic information. When designing the questionnaire, we used similar questions
and location-audience contexts used in previous work on social acceptance [8, 10, 9, 242,
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Figure 3.1: Two example videos used in the survey: (a) a user is interacting with a mobile
device with silent speech input in a public place, (b) a video clip showing users lip movements
and the recognized text, and (c) another video showing a user using speech input on a mobile
device in a private room.

Figure 3.2: Example of survey questions to collect user feedback on using silent speech input
(a) in seven locations; and (b) in front of six audiences.

243]. We also followed many steps listed by [42], including item generation, context validity,
pre-testing with a pilot study, item reductions and others.

Researchers explored a number of ways to measure social acceptabilities of the methods
under investigation. One of the commonly used methods is to elicit participants’ responses
to social acceptability questions through the ‘audience-and-location’ axes [8, 9, 10, 242],
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where participants are asked to provide their social comfortness of using a method in front
of different audiences and locations. Participants commonly respond by indicating how
comfortable they were using the method on a 5-point Likert scale – Extremely comfortable,
Somewhat comfortable, Neither comfortable nor uncomfortable, Somewhat uncomfortable,
and Extremely uncomfortable. Therefore, we used six audiences (i.e., alone, partner, fam-
ily, friends, colleagues, and strangers) and seven locations (i.e., home, shop, bus or train,
pavement or sidewalk, pub or restaurant, museum or library, and workplace) to explore par-
ticipants’ impression of using the two input methods (i.e., speech and silent speech). As
participants might not be familiar with a input method, we used a set of video clips showing
users using the two methods to interact with a mobile device in two different contexts – in
a busy café surrounded by strangers and at home when alone.

3.1.4 Participants and Study Procedure

To recruit participants, we posted the survey as a task in Amazon Mechanical Turk (AMT), a
popular Crowdsourcing platform. All AMT users (i.e., workers) could see the task, however,
only the workers who owned a smartphone and had a minimum of 70% approval rate on
their previously completed tasks could participate. Workers were compensated with USD
$1.50 for their time. We collected data from 109 crowdsourced participants. 62 of them were
from the U.S., 6 were from India, 2 were from Brazil, and 1 was from Germany. 8 of them
were in the age range of 18–24 years, 28 were in 25–34 years, 18 were in 35–44 years, 10 were
in 45–54 years, 5 were in 55–64 years, and 2 were 65 years or older.

The survey was self-paced and the workers were asked to first watch the video clips for
an input method, then respond to the questions related to that method. We also clearly
instructed them not to relate comfort with physical comfort (e.g., tiredness), rather focus
on social and mental aspects of it when providing their responses. Similar strategies were
applied in previous studies exploring the social acceptance of new input modalities [8].

As mentioned earlier, data collected from crowdsourcing platforms sometimes raises con-
cerns due to the lack of direct supervision of the workers. Thus, we used the following criteria
to remove outliers from our data. (i) Duplicate IP address: we removed any data with the
same IP address. This outlier removal technique was also used in prior studies [9, 10]. (ii)
Time threshold: as participants were required to watch a set of videos before responding
to the questions, they had to spend a minimum time to watch the videos and read and
understand the questions before answering them. Consequently, any responses that were
submitted within 3 minutes of start were excluded from our analysis. (iii) Incorrect answers:
there were a few open-ended questions asking participants to provide justifications for their
responses. Any data with incorrect, incomplete, or random answers were rejected. This
process excluded in total 38 participants. Hence, we analyzed the data from 71 participants.
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Figure 3.3: Medians of social acceptability for two input methods from users’ perspective
across (a) location, (b) audiences and from viewers’ perspective across (c) location and (d)
audiences, and (e) users’ overall preference for two input methods. The error bars represent
±1 standard deviation (SD).

3.2 Results

We used non-parametric analyses on the data and, thus, median values are reported. We
also report the effect size (r) for the Wilcoxon signed-rank test. Since r for the Friedman test
is calculated for pairwise comparison and there is not an agreed method for calculating the
confidence interval [245], Kendall’s W is most commonly used to assess agreement among the
raters. Hence, we report W for the Friedman test. Both r and W use the Cohen’s interpre-
tation where 0.1 constitutes a small, 0.3 constitutes a medium, and > 0.5 constitutes a large
effect. We aggregated users ratings for each input across all the locations and audiences.

Figure 3.3 (a) and (b) show the median of social acceptability for each input across lo-
cations and audiences, respectively, from users’ perspective. A Wilcoxon signed-rank test
revealed significant differences between the speech and silent speech input methods across
locations (z = −4.59, p < .05, r = 0.54). However, we found no significant difference between
aggregated values for two input methods across audiences (z = −1.36, p = .17, r = 0.16).
Figure 3.3 (c) and (d) show the median of social acceptability ratings for each input across lo-
cations and audiences, respectively, from viewers’ perspective. A Wilcoxon signed-rank test
showed that silent speech input was significantly different from speech input (z = −2.5, p <
0.05, r = 0.30) across locations. However, we did not find any significant difference between
two input methods across audiences (z = −1.14, p = .26, r = 0.14). We also asked partic-
ipants to provide their preference for using the two input methods to interact with mobile
devices across locations and audiences. Figure 3.3 (e) shows the results. A Wilcoxon signed-
rank test revealed significant differences between speech and silent speech input methods
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(z = −3.27, p < .05, r = 0.39). We recommend caution in interpreting the “not significant”
results since they yielded a small effect size (r < 0.3).

3.3 Discussion

The results suggest that social acceptability for the two input modalities from users’ and
viewers’ perspectives were different across locations as users considered the less noticeable
input method (e.g., silent speech) as their preferred method to interact with mobile devices.
Similar findings were revealed in a prior work [9], where they suggested that less noticeable
input methods (e.g., ring and touchpad) are more socially acceptable than noticeable ones
(e.g., hand gestures) to interact with an HMD. The results also show that participants
preferred to use silent speech input over speech input. In subjective feedback, participants
expressed their interest in using silent speech input as it is more subtle and provide a high
degree of privacy and security than the other method. One participant (male, 35–44 years)
commented, “I would still feel that I have a high level of privacy when using silent input“.
Another participant (female, 35–44 years) wrote, “I prefer whisper or silent because it doesn’t
bother others and can be used in quiet places like libraries”.

Though the results showed users’ interest in using silent speech input, several key ques-
tions remain unknown that could influence their attitude towards using the method. For
instance, researchers showed that silent speech input could be prone to high error rates [174,
232, 211, 74]. Consequently, silent speech recognition accuracy could be a key factor in
adopting the method. However, little is know of users’ error tolerance level for silent speech
input. Additionally, silent speech input recognition on mobile devices depends primarily on
capturing users tongue and lip movements via the front camera. Thus, providing appro-
priate real-time feedback on input recognition is critical for the acceptance of the method.
Therefore, in the next Chapter, we explore error tolerance and suitable feedback mechanism
for silent speech input.
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Chapter 4

Error Tolerance and Real-time
Feedback for Silent Speech

This chapter first examines users’ error tolerance with speech and silent speech input meth-
ods, where results revealed their willingness to tolerate more errors with silent speech for the
sake of privacy and security. Second, it explores a suitable feedback for silent speech input,
we observed that users found both a commonly used video and an abstract (a blinking dot)
feedback effective but the latter significantly more private, more secure, and less intrusive
than the video feedback. We learned that designing solutions for silent speech input requires
careful consideration of various factors and privacy concerns as well as people’s tolerance
towards using it.

4.1 Error Tolerance

Since the survey results revealed that users put much emphasis on privacy and security, we
conducted a Wizard-of-Oz study to investigate whether they are willing to compromise the
accuracy of an input method for increased privacy and security.

4.1.1 Apparatus

We developed a custom client/server web application with HTML5 and JavaScript for the
Wizard-of-Oz study. The client and server communicated with each other using WebRTC1.
The client interface looked and felt like the interface depicted in Fig. 3.1. It was launched
on a Google Chrome mobile web browser (v71.0.3578.98) on a Motorola Moto G5 Plus
smartphone (150.2x74x7.7 mm, 155 g) at 1080x1920 pixels. The server was hosted on a
HP Pavilion 15 laptop computer running on Linux 16.04 at 1920×1080 pixels. The server
interface was launched on a Google Chrome web browser (v74.0.3729.157), which included
dedicated buttons for each condition for the researcher (wizard) to display the spoken and

1Real-time communication for the web, https://webrtc.org

https://webrtc.org
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silently spoken phrases on the client side. Both devices were connected to a fast and reliable
Wi-Fi network. There were no network dropouts during the study.

4.1.2 Participants

Twelve volunteers from the local university community participated in the user study. Their
age ranged from 22 to 25 years (M = 24.25, SD = 1.48). Four of them identified as women
and eight as men. They were all experienced smartphone (at least 5 years of experience, M
= 7.25, SD = 1.48) and voice assistant (at least one year of experience, M = 2.5 years, SD =
0.65) users. Most of them used multiple voice assistants, including Alexa, Cortana, Google
Assistant, and Siri. Two participants used these voice assistants almost every day, eight of
them used these occasionally, and the remaining two rarely used these.

4.1.3 Design

The study used a within-subjects design. The independent variables were method and in-
jected error rate and the dependent variables were the qualitative metrics. In summary, the
design was:

12 participants ×

2 methods (speech and silent speech, counterbalanced) ×

5 injected error rates (0%, 5%, 10%, 15%, and 20%, randomized) ×

12 phrases from the [188] set = 1,440 phrases, in total.

4.1.4 Error Injection

Injected errors are commonly used in text entry research to study the effect of errors on
performance and preference [164, 20, 22, 11]. In the study, we injected 0%, 5%, 10%,
15%, and 20% misrecognition errors. A misrecognition error occurs when the recognizer
incorrectly recognizes a word [22], for example, “take a coffee break” (“coffee” was replaced
with “toffee”). The total number of misrecognition errors in a condition was calculated using
the following equation: (w × e)/100, where w is the total number of words in all presented
phrases in the condition and e is the target error rate. We injected errors at word level since
both speech and silent speech methods work at either word or phrase level. To inject errors,
we randomly replaced a word consisting more than three letters with a similar sounding
word, excluding the first word. To assure that all participants encountered the same errors,
we randomly pre-selected a subset of phrases from the [188] set, then used those with the
methods in a counterbalanced order. The error injection rates were selected based on the
findings of a prior investigation the reported that user performance tend to drop significantly
when error rate of an input method reaches 20% [22].
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Figure 4.1: Two participants taking part in the second study at a cafeteria.

4.1.5 Procedure

We conducted a Wizard-of-Oz study to control the error rate in each condition. Before the
study, participants were told that the purpose of the study was to compare the performance
of multiple speech and silent speech recognition methods that may vary in accuracy rate.
The study took place at a campus cafeteria. We picked a public place for the study since
its purpose was to investigate whether users were willing to tolerate more errors for the
sake of increased privacy and security. Note that the survey results suggested that users are
likely to be more conscious about their privacy and security when in public. Upon arrival,
we demonstrated the speech and silent speech methods on the smartphone and explained
the study procedure to each participant. We then collected their consents. The study
started after that, where participants were instructed to enter short English phrases from
the [188] set using either speech or silent speech at varying injected error rates. The methods
were counterbalanced and the error rates were randomly injected to mitigate any potential
learning effects. The interface displayed one phrase at a time. Participants were instructed
to tap on the screen when they were done speaking or silently speaking the phrase. They
all sat at a table in the cafeteria (Fig. 4.1). A researcher (the wizard) sat at a nearby table
with the server interface launched on a laptop computer. Upon completion of each phrase,
she pressed a key to display the recognized phrase and the next phrase on the smartphone.
Participants were asked to speak or silently speak a phrase again when the phrase contained
a misrecognized word. Upon completion of each condition (method × injected error rate),
participants completed a short questionnaire that asked them to rate their willingness to
use the examined methods on a 5-point Likert scale. Upon completion of the complete
study, they completed the NASA-TLX questionnaire [210] to rate the methods’ perceived
workload. We then held a debrief session to explain the study’s actual purpose. A complete
study session took about 60 minutes.
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4.2 Results

We used non-parametric analyses on the data, thus report median values. We also report the
effect size r and Kendall’s W for the Wilcoxon signed-rank and Friedman tests, respectively
(see Section 3.2).

4.2.1 Willingness to Use

A Friedman test identified a significant effect of condition on willingness to use (χ2(9) =
94.04, p < .0001, r = 0.87). There was a significant effect of injected error rate on willingness
to use for both the speech (χ2(4) = 38.06, p < .0001) and silent speech (χ2(4) = 48.00, p <
.0001) methods. A Dunn’s multiple comparisons test identified a significant difference in
willingness to use between the methods with both 10% (z = 2.75, p < .05) and 15% (z =
2.83, p < .05) error rates. Fig. 4.2 illustrates median willingness to use for both methods
with the five injected error rates.

Figure 4.2: Median willingness to use ratings for speech and silent speech with the five
injected error rates on a 5-point Likert scale, where where 1 to 5 represented Very unlikely
to Very likely. The error bars represent ±1 standard deviation (SD).

4.2.2 Perceived Workload

A Wilcoxon Signed-Rank test identified a significant effect of method on temporal demand
(z = −1.1, p < .05, r = 0.61) and overall performance (z = −2.24, p < .05, r = 0.65).
However, no significant effect was identified on mental demand (z = −1.93, p = .05, r = 0.55),
physical demand (z = −0.93, p = .35, r = 0.27), effort (z = −1.45, p = .15, r = 0.42), or the
level of frustration (z = −0.99, p = .32). Fig. 4.3 illustrates median Raw TLX (RTLX) scores
for both methods. We analyzed the subscales individually, which is a common modification
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made to NASA-TLX [113]. Note that the evidence is inconclusive about whether RTLX is
more sensitive, less sensitive, or equally sensitive compared to the original version, thus [113]
left it to the researchers’ discretion.

Figure 4.3: Median RTLX scores of the workload related to speech and silent speech methods.
The error bars represent ±1 standard deviation (SD).

4.3 Discussion

Results revealed that 0% and 5% error rates yielded the highest and 20% error rate yielded
the lowest willingness to use ratings for both methods. This is not surprising since prior
investigations reported that user performance with an input method is the best between
0% and 5% error rates, slightly drops between 5% and 10% error rates, and the worst at
20% error rate [20, 22]. Interestingly, for 10% and 15% error rates, the willingness to use
ratings for speech dropped at a higher rate that silent speech (Fig. 4.2). A post hoc analysis
failed to identify a significant difference between 0–5% and 10–15% error rates for silent
speech, while these two groups were significantly different for speech. This suggests that
users were willing to tolerate more errors in silent speech. When asked about this during the
debrief session, all participants (100%) responded that it was mostly due to concerns about
their privacy and security. They feared that speech will violate their privacy and security
in public places, especially when they are surrounded by unknown people. One participant
(female, 22 years) commented, “Sometimes, I feel very hesitant to type with my voice publicly
because I always feel that someone else is listening to me”. In contrast, participants felt that
silent speech is more private and more secure, thus were willing to compromise accuracy to
some extent. One participant (male, 23 years) commented, “[Silent speech] is very useful for
sharing important information in public”.
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There was a significant difference in temporal demand and overall performance for the
two methods. Most participants felt that silent speech required more time to use than speech
(Fig. 4.3). The debrief session revealed that it was because participants silently spoke the
phrases at a much slower rate than speech assuming that it will increase the method’s
accuracy (although in reality it had no effect since we used a Wizard-of-Oz setup). This also
significantly affected their overall rating of the method. There was no significant difference in
mental demand, physical demand, effort, and frustration. However, we recommend caution
in interpreting these results since in the study participants used the methods while seated
at a table. Although we did not instruct them on how to hold the device, they all held the
device with both hands for clear view of the interface (Fig. 3.1) and rested their elbow on the
table for comfort (Fig. 4.1). Hence, the results may differ when the methods are evaluated
in a standing position or while walking.

4.4 Real-time Feedback Mechanism for Silent Speech

Providing appropriate feedback on the system status is the key usability principle while
designing any system. Efficient visual feedback helps users to interpret the system status
correctly, enabling them to access information rapidly and accurately [182]. However, de-
signing effective visual feedback for mobile devices is challenging due to their limited display
space. Besides, some participants of the previous study (see 4.1) commented that the video
feedback method occupies much of the smartphone real estate, leaving a little or no space
for additional input and interaction tasks (Fig. 3.1). We, therefore, conducted a user study
to find out whether it is feasible to replace the commonly used video feedback with a more
compact, abstract feedback method.

4.4.1 Apparatus

We used the same client/server architecture as the last study (see 4.1), but with an updated
user interface (Fig. 4.4). Further, we hosted the app on GitHub2 to enable people outside the
campus network access the client. Six participants used Apple iOS-based smartphones, while
the remaining six used Android-based smartphones. Ten of them used a Google Chrome
mobile web browser (> v84), while the remaining two used a Safari browser (> v85) to
access the client app. The wizard used a Microsoft Surface Book 3 (34.3 cm display, i7 CPU
at 1.90GHz, 16GB RAM) to launch the server interface on a Google Chrome web browser
(v85.0.4183.102). We did not record any network dropouts during the study.

4.4.2 Feedback Methods

We implement the following two types of visual feedback:

2GitHub Pages, https://pages.github.com

https://pages.github.com
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Figure 4.4: The two visual feedback methods used in the study: (1) video feedback that
always displays the video captured by the device’s front-facing camera on the screen (left)
and (2) abstract feedback that displays a grey or a blinking red dot at the top right corner
of the device based on whether the camera can see the lips or not, respectively (right).

• Abstract feedback. The abstract feedback method is designed to provide minimal
feedback on silent speech input. For this, we used a grey dot at the top right corner of
the device that turns red and starts blinking when the system tracks the lips (similar
to the video recording button on most mobile device). The dot turns grey and stops
blinking when the device is unable to see the lips. We use this feedback as it offers
a higher level of privacy (does not show users’ face or lips) and use minimum screen
space on the device.

• Video feedback. The video feedback method provides detailed information about
users’ lip by showing the video captured by the device’s front-facing camera. We place
the video on the screen as constant feedback to users about the systems status. Though
this form of feedback provides precise information on whether the camera can see users’
lips, it consumes a considerable portion of the screen real-estate.

4.4.3 Participants

Twelve participants (6 female, 6 male) aged 23 to 34 years (M = 28.75, SD = 2.89) partici-
pated in this study. All the participants reported being right-handed, using smartphones for
the last 8.58 years (SD = 2.29), and using at least one voice assistant system for 2.26 years
(SD = 2.24). None of the participants had prior experience using silent speech input. Note
that none of the participants participated in the previous studies.
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4.4.4 Error Injection

We injected errors in this study for two reasons. First, to increase the validity of the study
since none of the current recognition systems are 100% accurate. Besides, a fully accurate
system would have altered some participants about the Wizard-of-Oz setup. Second, to in-
vestigate whether users perceive the frequency in which errors occur differently with different
feedback methods. For error injection, we used the same approach as the previous study (see
4.1). However, here we maintained a constant 5% error rate over all sessions and injected
tracking error rather than misrecognition error. The 5% error rate was chosen as it was
found to be an acceptable error rate in various text entry system [20, 22, 11]. A tracking
error occurs when the system fails to track the lips because they are out of sight or range, or
due to technical issues, resulting in missing words in the final text, for example, “take it to
the recycling depot” (“recycling” is removed). We injected tracking error since the purpose
of visual feedback on a recognition system is usually to inform users that it is receiving the
tracking signals. Hence, tracking error is more appropriate to evaluate the efficiency of visual
feedback than misrecognition error.

4.4.5 Design

The study used a within-subjects design. The independent variables was feedback and the
dependent variables were the qualitative metrics. In summary, the design was:

12 participants ×
2 feedback methods (video and abstract, counterbalanced) ×
30 phrases from MacKenzie & Soukoreff set [188] with 5% injected error
= 720 phrases, in total.

4.4.6 Procedure

The study was conducted remotely due to the spread of COVID-19. We scheduled a video
call with each participant ahead of time. They were told that the purpose of the study was
to evaluate two different types of visual feedback on a working silent speech recognizer. They
were instructed to join the call from a quiet room to avoid any interference during the study.
A researcher (the wizard) demonstrated the system and the feedback methods, explained
tracking error (that the inability to track the lips results in missing words in the recognized
phrase), collected their consents and demographics, and provided all instructions via the
video call. The researcher provided the participants with a link to the client app, which
they accessed on their smartphone using their preferred web browser. They were instructed
to activate the airplane mode but keep the Wi-Fi enabled to avoid any interruptions due
to incoming calls. The system displayed one phrase at a time. Participants were asked
to silently speak the phrase then tap on the screen to see the recognition and the next
phrase. The researcher displayed the recognized phrase and updated the presented phrase
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using the server interface. We did not instruct the participants on how to hold the device
but informed them that the blinking red dot will turn grey when the system cannot track
the lips during the graphical feedback condition. The researcher observed all interactions
with the smartphone to manually turn the blinking red dot to grey when the front-facing
camera is unlikely to capture the lips due to the holding posture or angle. Error correction
was not required in this study. Upon completion of the study, participants completed a
short questionnaire that asked them to rate various aspect of the two feedback methods on
a 5-point Likert scale. We then held a debrief session to inform the participants about the
actual nature of the study. The complete study session was recorded using a screen recorder.

4.5 Results

We used non-parametric analyses on the data, thus report median values. We also report
the effect size r for the Wilcoxon signed-rank test.

A Wilcoxon signed-rank test identified a significant effect of feedback on whether the
method provides enough details about lip detection (z = −2.06, p < .05, r = 0.6), oc-
cludes, interrupts, and interferes with the task at hand (z = −2.84, p < .01, , r = 0.82),
and compromise privacy and security (z = −2.41, p < .05, r = 0.7). However, there
was no significant effect on effectiveness (z = −0.30, p = .76, r = 0.09), perceived speed
(z = −1.34, p = .18, r = 0.39), perceived accuracy (z = −0.71, p = .48, r = 0.2), or the
overall preference (z = −1.56, p = .12, r = 0.45). Fig. 4.5 illustrates median ratings of all
aspects of the two feedback methods.

Figure 4.5: Median ratings of various aspects of the two feedback methods on a 5-point
Likert scale, where where 1 to 5 represented Strongly disagree to Strongly agree. The error
bars represent ±1 standard deviation (SD).
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4.6 Discussion

Participants found both feedback methods equally effective. They found the video feedback
significantly more informative than abstract feedback. This is not surprising since video
feedback displayed a real-time video captured by the device’s front-facing camera. Interest-
ingly, participants found the abstract feedback to be the least intrusive (does not occlude,
interrupt, or interfere with the task at hand) and most private and secure (does not com-
promise the user’s privacy and security). Once participant (female, 31 years) commented,
“I have privacy concerns with video feedback, I don’t want to see my phone camera on when
using apps all the time”. Another participant (male, 27 years) wrote, “In my opinion, the
video feedback mode will always gonna be a concern for my privacy and security”. In terms
of willingness to use, participants were slightly leaning towards the abstract feedback, but
this difference was not statistically significant (medium effect size). This is not necessarily
a bad thing since it can be interpreted as, users are impartial about the methods, thus us-
ing an abstract feedback method is an acceptable design choice. Participants found both
methods to be equally reliable (did not compromise accuracy), but interestingly they felt
the system with video feedback was slower (statistically not significant) although both used
the same Wizard-of-Oz setup. We speculate this is because participants were looking at the
video while speaking, which increased the mental demand due to information processing,
giving them the impression that it was slower. One limitation of these findings is the lack of
generalizability in terms of personality, culture, and ethnic background. Although, the study
questionnaire used questions from the SUS questionnaire [45] and custom questions prepared
following the [78] guideline, they were not formally validated for the effects of personality,
culture, and ethnic background.

Our general intuition may provide initial guidance regarding speech and silent speech
input that the latter is likely to be more acceptable than the former due to the nature of
the method (it is subtle and less visible). However, without empirical data, it is difficult to
come to a conclusion as users’ perception towards using the method might be influenced by
various factors, such as where they are using the method, in front of whom they are using
it, and their acceptance towards the errors committed by the methods. The study results
confirm that silent speech input is more socially acceptable as it is subtle, more secure,
and less attention-seeking than speech input. Moreover, our results affirm that users are
willing to accept more recognition errors with silent speech input than speech input. This
is primarily due to the fact that the method is more private, secure, and does not trigger
feelings of discomfort. Consequently, users expressed their intention to use the method even
with a higher rate of errors than speech input. However, they also showed their preference in
limiting the error rate within a reasonable threshold (e.g., 5–10%) for both input methods.
We also observed that there is a possible linkage between perceived privacy and security
and feedback design for silent speech input. Though video feedback provides users with
detailed information (e.g., whether lip movements are captured by the camera), participants
expressed their concerns about using this feedback method as it may operate in an always-on
manner, continually tracking and analyzing lip movements from the camera. These results
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further confirm users’ strong intention to ensure a high level of privacy and security while
inputting on mobile devices.

It is important to note that, while the results are promising, the studies were conducted
with Wizard-of-Oz mimicking a mobile silent speech input method. Hence, we were unable
to study other technical factors (e.g., silent speech processing delay) that could have affected
users’ willingness to use the method. Therefore, in the next Chapter, we examine the
technical aspects of silent speech input.
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Chapter 5

LipType: A Silent Speech Recognizer

This chapter presents the development of LipType, an optimized version of LipNet [25] for
improved speed and accuracy. Since developing a new system and acquiring new datasets
require an enormous amount of time, effort, and other resources, in this work we exploited
a state-of-the-art silent speech recognizer, LipNet [25]. Based on preliminary investigations,
we found out that LipNet and other existing recognizers have substantially slower response
time and are erroneous due to their architecture. To address these, we develop LipType,
an optimized version of LipNet for improved speed and accuracy. LipType demonstrated
significant improvements in the performance of LipNet with a 47% reduction in word error
rate and 8.6 seconds reduction in computation time.

5.1 An Optimized LipNet Model

We used LipNet as the backbone model based on a study comparing LipNet [25], LCANet
[301], Transformer [5], and WAS [60] models. The former two are trained on GRID dataset
[66], the latter two on LRS dataset [5]. In an evaluation with 50 random videos from the
respective datasets, LipNet and LCANet yielded similar WER ( 4%), while Transformer and
WAS were more error-prone (> 49% WER). Of the two best performed models, we picked
LipNet as it is more widely used than LCANet.

LipNet [25] is an existing end-to-end sentence-level model that maps a variable-length
sequence of video frames to text, making use of a deep 3-dimensional convolutional neural
network (3D-CNN) [141], a recurrent network, and the connectionist temporal classification
loss. The model was trained on GRID dataset comprising of highly constrained vocabulary.
Although LipNet has proven to be promising, it has several limitations. First, LipNet is
focused on capturing spatial and temporal information using deep 3D-CNN that neglects
the hidden information between channel correlations in spatial and temporal directions [77],
limiting the performance of the architecture. Further, the use of a deep 3D-CNN unnecessar-
ily increases computational complexity and memory intensiveness. We address these issues
in LipType, an optimized version of LipNet for improved speed and accuracy.
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In LipType, we combined a shallow 3D-CNN (1-layer) and a deep 2D-CNN (34-layer
ResNet [117]) integrated with squeeze and excitation (SE) [128] blocks (SE-ResNet) to cap-
ture both spatial and temporal information. We used this hybrid-CNN model to address
the limitations of 3D-CNN that it neglects the information between channel correlations
and increases computational complexity, as well as 2D-CNN’s inability to capture temporal
information. SE-ResNet adaptively recalibrates channel-wise feature responses by explicitly
modelling inter-dependencies between the channels to improve the quality of feature repre-
sentations. Moreover, it is computationally lightweight and imposes only a slight increase
in model complexity and computational burden [128]. Thus, we hypothesize that the pro-
posed hybrid frontend module will reduce the overall computational complexity of LipNet
and improve its performance.

5.1.1 The Network

The LipType network consists of two sub-modules (or sub-networks): a spatiotemporal fea-
ture extraction frontend that takes a sequence of video frames and outputs one feature vector
per frame and a sequence modeling module that inputs the sequence of per-frame feature
vectors and outputs a sentence character by character, as shown in Fig. 5.1. We describe
these modules in the following sections.

CTC Loss

Video frames
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Convolution (3D-CNN)
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Squeeze and Excitation 
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Figure 5.1: Architecture of LipType: a sequence of T frames is fed to a 1-layer 3D CNN,
followed by 34-layer 2D SE-ResNet for spatiotemporal feature extraction. The extracted
features are processed by two Bi-GRUs, followed by a linear layer and a softmax. The
network is trained entirely end-to-end with CTC loss.

5.1.1.1 Spatiotemporal Feature Extraction

It starts with the extraction of a mouth-centred cropped image of size H:100 × W:50 pixels
per video frame. For this, videos are first pre-processed using DLib face detector [157] and the
iBug face landmark predictor [251] with 68 facial landmarks combined with Kalman Filtering.
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Then, a mouth-centred cropped image is extracted by applying affine transformations. The
sequence of T mouth-cropped frames are then passed to 3D-CNN, with a kernel dimension
of T:3×W:5 × H:5, followed by Batch Normalization (BN) [133] and Rectified Linear Units
(ReLU) [6]. The extracted feature maps are then passed through 34-layer 2D SE-ResNet
that gradually decreases the spatial dimensions with depth, until the feature becomes a single
dimensional tensor per time step.

5.1.1.2 Sequence Modeling

The extracted features are processed by 2-Bidirectional Gated Recurrent Units (Bi-GRUs)
[61]. Each time-step of the GRU output is processed by a linear layer, followed by a softmax
layer over the vocabulary, then an end-to-end model is trained with connectionist temporal
classification (CTC) loss [107]. The softmax output is decoded with a left-to-right beam
search [64] using Stanford-CTC’s decoder [183] and 5-gram character language model [105]
to recognize the spoken utterances. The model is capable of mapping variable-length video
sequences to text sequences.

5.1.2 Experiment

We conducted an experiment to compare the performance of LipNet and LipType.

5.1.2.1 Dataset

For a fair comparison between the two models, we trained the LipType model on the same
GRID dataset [66] on which the LipNet model was trained. It comprises of short and
formulaic video clips of a person’s face when uttering a highly constrained vocabulary in a
specific order (N = 34). Similar to a previous experiment investigating the performance of
LipNet with overlapped speakers [25], this experiment used 21,635 videos for training and
7,140 videos for evaluation.

5.1.2.2 Implementation

To avoid any potential confounding factor, we trained both models from scratch with the
same training parameters. The number of frames was fixed to 75. Longer image sequences
were truncated and shorter sequences were padded with zeros. We applied a channel-wise
dropout [273] of 0.5. The model was trained end-to-end by the Adam optimizer [159] for
60 epochs with a batch size of 50. The learning rate was set to 10−4. The network was
implemented based on the Keras deep-learning platform with TensorFlow [1] as the backend.
We trained and tested both models on NVIDIA GeForce 1080Ti GPU board.

5.1.2.3 Performance Metrics

We used the following metrics to benchmark the proposed framework.
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• Word error rate (WER) is the minimum number of operations required to trans-
form the predicted text to the ground truth, divided by the number of words in the
ground truth. It is calculated using the following equation, where S is the number of
substitutions, D is the number of deletions, I is the number of insertions, and N is the
number of words in the ground truth.

WER =
S +D + I

N
(5.1)

• Words per minute (WPM) is a commonly used text entry metric that signifies the
rate in which words (= 5 chars) are entered [19]. It is calculated using the following
equation, where T is the number of recognized words, t is the sum of speaking time
and computation time in seconds, the constant 60 is the number of seconds per minute,
and the factor of one fifth accounts for the average length of a word in the English
language.

WPM =
|T | − 1

t
× 60× 1

5
(5.2)

• Computation time (CT) is the total time required by the model to predict a phrase.
It does not include the time users take to speak a phrase.

(a) (b) (c)

Figure 5.2: Performance comparison of LipNet and LipType in terms of a) word error rate,
b) words per minute, and c) computation time. Reported values are the average of all values.
Values inside the brackets are standard deviations (SD). Error bars represent ±1 standard
deviation.

5.2 Results

In the experiment, LipType outperformed LipNet in terms of input speed, accuracy, and
computation time. LipType achieved 2.6% WER, 6.4 WPM, and 6.3 seconds CT (Fig. 5.2).
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In comparison with LipNet, it exhibited a 47% reduction in WER, 39% increase in WPM
and 8.6 seconds reduction in CT. These findings confirm our intuition that extracting spa-
tiotemporal features using the hybrid of a shallow 3D-CNN and a deep 2D-CNN integrated
with SE blocks, instead of only 3D-CNN, will reduce the overall computational complexity
and improve performance.

5.3 Discussion

We developed LipType, an optimized version of LipNet for improved speed and accuracy.
LipType demonstrated a signifcant improvement in the performance of LipNet. Results re-
vealed 47% reduction in WER, 39% increase in WPM, and 8.6 seconds reduction in CT.
Despite these improvements, LipType and other silent speech recognition models remain
unreliable in real-world settings. These models do not account for various extraneous factors
such as uncontrolled lighting, blur, low resolution, compression artifacts, occlusions, viewing
angles, etc. However, most of the factors can be mitigated by replacing the hardware (blur,
low-resolution, compression artifacts, etc.) or by the user (occlusions, viewing angles, etc.).
Lighting, in contrast, is one of the factors that cannot always be controlled. Not accounting
for this in a vision-based speech recognition compromises its fairness and reduces its appli-
cability in real-world scenarios. Therefore, in the next Chapter, we develop an independent
repair model that processes video input for poor lighting conditions, when applicable, and
corrects potential errors in output for increased accuracy.
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Chapter 6

An Independent Repair Model

This Chapter presents the development of an independent repair model, a multi-stage pipeline
compensating for poor lighting conditions and potential recognition errors for increased ac-
curacy of speech and silent speech recognizers. It then presents an empirical demonstration
of the repair models’ effectiveness on multiple speech and silent speech recognizers. Empir-
ical results showed that it improves accuracy rates for all recognizers without substantially
compromising the computation time.

6.1 Repair Model: Light Enhancement and Error

Reduction

We present a new repair model, a multi-stage pipeline that accounts for poor lighting condi-
tions in input videos and potential errors in the recognition. It includes a pre-processing step
to enhance videos with poor lighting conditions and a post-processing step to automatically
detect and correct potential errors generated by the recognizer. A key consideration for this
model was its independence, to make sure it is not reliant on a specific recognizer so that it
can be used with a variety of speech and silent speech recognition models.

6.1.1 Light Enhancement

There are various factors that can affect the performance of silent speech recognition, for
example, uncontrolled lighting, blur, low-resolution, compression artifacts, occlusions, view-
ing angles, pace of speech, etc. However, most of the factors can be mitigated by replacing
the hardware (blur, low-resolution, compression artifacts, etc.) or by the user (occlusions,
viewing angles, accent, pace of speech, etc.). Lighting, in contrast, is one the factor that
cannot always be controlled.

Making recognition more reliable under uncontrolled lighting conditions is one of the
major challenges for practical silent speech recognition models. Existing models do not
account for lighting variations, making them unreliable in poorly lit places. We tackle this
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by adding a pre-processing step to the LipType [See Chapter 5] recognition model. For
this, we improved GLADNet [294], a low-light image enhancement network, and adapted
it for enhancing input videos. We used GLADNet because it demonstrated a much better
performance with actual under-exposed images compared to the other models, both in terms
of quality [143, 110, 92, 79] and computation complexity [299, 4, 173, 52].

6.1.1.1 The Network

The light enhancement network learns an end-to-end mapping from low-light images to
normal-light images. It processes videos in a frame-by-frame manner, as illustrated in
Fig. 6.1. The architecture of the network comprises of two adjacent steps: the first is
for global illumination estimation and the second is for detail reconstruction.
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Figure 6.1: Architecture of the pre-processing (light enhancement) network: a sequence of
low-light images is fed through the network where the enhanced images are compared with
the normal-light images to compute the loss, which is then backpropagated to fine-tune and
optimize the model weights and biases.

In the global illumination estimation step, input is down-sampled to a fixed size feature
map using nearest-neighbor interpolation. Then, it is passed through an encoder-decoder
network1 to estimate the global illumination of the input. The estimated feature maps are
then re-scaled to the original size using a resize convolution block. Then, the re-scaled
feature maps are passed to the detail reconstruction step comprising of three convolutional
layers. This step adjusts the illumination of the input image by assembling predicted global
illumination and input image information, and fills in the details lost during the down- and
up-sampling processes. Inspired by a previous work [309], we investigated the consequences
of replacing the L1 loss function used in the training of GLADNet with alternative loss
functions. Given a collection of N training sample pairs Xi , Yi, where Xi is low-light input
image and Yi is normal-light ground truth image, the following loss functions can be defined.

1In order to reduce computation, we changed the GLADNet network dimension from five down- and
five up-sampling blocks to three down- and three up-sampling blocks. A preliminary investigation did not
identify a significant effect on variations in layer dimensions on the network’s performance.
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1. L1 Loss (or mean-absolute-error loss) minimizes the sum of the absolute differences
between the predicted or generated image and the ground truth.

L1(X, Y ) =
1

N

N∑
i=1

(Xi − Yi) (6.1)

2. L2 Loss (or mean-squared-error loss) minimizes the sum of the squared differences
between the predicted or generated image and the ground truth.

L2(X, Y ) =
1

N

N∑
i=1

(Xi − Yi)2 (6.2)

3. Multi-scale structural similarity loss (MSSSIM) [309] minimizes the loss related
to the sum of structural-similarity scores across all image pixels, in terms of luminance,
contrast, and structure.

MSSSIM(X, Y ) = −
N∑
i=1

MSSSIM(Xi − Yi) (6.3)

4. MSSSIM-L1 loss captures MSSSIM’s ability to preserve the contrast in high-frequency
regions and L1’s ability to preserves colors and luminance. In the equation below, G
is the Gaussian filter, α is the weighting factor to roughly balance the contribution of
the two losses. We empirically set α = 0.812.

MSSSIM-L1(X, Y ) = α ·MSSSIM + (1− α) ·Gσ · L1 (6.4)

5. MSSSIM-L2 loss captures MSSSIM’s ability to preserve the contrast in high-frequency
regions and L2’s ability to remove noise and ringing artifacts. Like MSSSIM-L1,
α = 0.81 and G is the Gaussian filter.

MSSSIM-L2(X, Y ) = α ·MSSSIM + (1− α) ·Gσ · L2 (6.5)

6.1.2 Experiment: Light Enhancement Network

We evaluated the performance of the light enhancement network trained with the above five
loss functions.

6.1.2.1 Dataset

We trained and validated the network on the GLADNet dataset [294] that comprises of
5,000 image pairs of low and normal light images. We used 4,000 pairs for training and the
remaining 1,000 pairs for testing.

2In an investigation, results were not affected by small variations in α.
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6.1.2.2 Performance Metrics

We used the following two standard image quality metrics [124].

• Peak signal to noise ratio (PSNR) computes the peak signal-to-noise ratio between
two images in decibels. This ratio is used as a quality measurement between the original
and an enhanced image. The higher the PSNR the better the quality of the enhanced
image.

• Structural similarity metric (SSIM) measures the perceptual difference between
two similar images. Unlike PSNR, SSIM is based on visible structures in the image.
The lower the SSIM the better the quality of the enhanced image.

6.1.2.3 Implementation

We trained the network for 70 epochs with a batch size of 32. It was optimized using Adam
[159]. The learning rate was set to 10−3. The network was implemented on the Keras deep-
learning platform with TensorFlow [1] as the backend. We trained and tested the network
on NVIDIA GeForce 1080Ti GPU board.

6.1.3 Results

Table 6.1 presents the performance comparison of GLADNet trained on the aforementioned
five loss functions in terms of averaged PSNR and SSIM. It can be seen that MSSSIM-L1
achieved the highest PSNR and outperformed other loss functions substantially in the SSIM
measure. Therefore, we used GLADNet trained with MSSSIM-L1 loss function to enhance
poor lighting input videos for more reliable silent speech recognition.

Metric Low-Light Enhanced
Loss Function

L1 L2 MSSSIM MSSSIM-L1 MSSSIM-L2

PSNR 19.74 26.22 25.66 26.11 27.34 26.13
SSIM 0.46 0.7822 0.7574 0.7890 0.8091 0.7911

Table 6.1: Averaged peak signal to noise ratio (PSNR) and structural similarity metric
(SSIM) for the five investigated loss functions. For MSSSIM, the reported values are obtained
as averages of the three color channels (RGB). The best results are highlighted in bold.
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6.1.4 Post-Processing: Error Reduction

This section presents a new algorithm for predicting and automatically correcting potential
recognition errors by a speech or silent speech recognizer. It comprises of two sub-modules:
an error minimization module that corrects potential errors in the recognized character
sequence using deep denoising autoencoder (DDA) [288] and a sequence decoder module
that converts corrected character sequence to meaningful word sequences using spell-checker
and a custom language model. The architecture of the network is illustrated in Fig. 6.2.
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Figure 6.2: Architecture of post-processing (error reduction) network: the predicted raw
sequence is fed to DDA, followed by spell checker and a custom language model.

6.1.4.1 Error Reduction

DDA has been successful in the context of reconstructing a noisy signal [89, 178]. In this
work, we used DDA to correct the character sequence predicted by the recognizer. The
predicted sequence is represented in the form of a matrix, where each row is a one-hot3

encoded vector, pointing to a particular character out of all. An input to autoencoder is
converted to a fixed length sequence: 28 in this case (26 letters of the English alphabet, 1
space character, and 1 newline character), either by subdividing the sequence or by appending
zero vectors, depending on the length of the sequence. This fixed length matricized sequence
is fed-forwarded through a DDA to obtain an improved character sequence. The DDA
is trained with the matricized incorrect character sequence as input and the matricized
correct sequence as the labels. This helped in reconstructing the sequence, thus reducing the
errors. In order to quantify the errors between incorrect sequence and the ground truth, we
used cross-entropy loss [308], which is given by the following equation, where x represents

3Encodes categorical data using a one-of-K scheme.
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the matricized incorrect character sequence and z represents the matricized ground truth
sequence.

Loss(x, z) = −
d∑

k=1

[xklogzk + (1− xk)log(1− zk)] (6.6)

6.1.4.2 Sequence Decoder

The corrected character sequence embedded with the space and newline characters is first
combined to form a sequence of words. The resultant word sequence is then passed to the
spell checker4 to be checked for spelling correctness for auto-correction, when necessary. In
addtion, a language model (LM) was used to get the most probable sequence of words.
We used a traditional count-based LM5. Typically, n-gram analysis in count-based LM is
a forward n-gram. However, we explored and evaluated the advantage of a bidirectional
n-gram modeling that accounts for both forward and backward directions. Formally, we
consider a string of n words, W = w1, w2, ..., wn. In a forward n-gram, the probability of
each word is estimated depending on the preceding words:

Pforward(W ) =P (w1| < start >) ∗ P (w2|w1)∗
P (w3|w2) ∗ ... ∗ P (< end > |wn)

(6.7)

In contrast, in a backward n-gram the probability of each word is estimated depending on
the succeeding words:

Pbackward(W ) =P (< start > |w1) ∗ P (w1|w2)∗
P (w2|w3) ∗ ... ∗ P (wn| < end >)

(6.8)

The combined probability of a sentence, thus, is computed by multiplying the forward and
backward n-gram probability of each word:

Pcombined(W ) =(Pforward(W1) ∗ Pbackward(W1))∗
(Pforward(W2) ∗ Pbackward(W2))∗
...∗
(Pforward(Wn) ∗ Pbackward(Wn))

(6.9)

Applying the values from Equations 6.7 and 6.8, we get:

Pcombined(W ) =(P (w1| < start >) ∗ P (< start > |w1))∗
(P (w2|w1) ∗ P (w1|w2))∗
(P (w3|w2) ∗ P (w2|w3))∗
...∗
(P (< end > |wn) ∗ (wn| < end >))

(6.10)

4How to write a spelling corrector, http://norvig.com/spell-correct.html
5A count-based LM follows the general idea of making nth order Markov assumptions and calculating

the n-gram probabilities through the means of counting.

http://norvig.com/spell-correct.html
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Finally, the network predicts and corrects potential errors committed by the language
model in the following three steps. (1) Compare the combined probability of each word,
Pcombinedwn = P (wn|wn−1) ∗ P (wn−1|wn) (Equation 6.10), with a pre-defined threshold τ1.
If Pcombinedwn is less than τ1, the word is considered erroneous. (2) Compute edit distance
(ED) between an erroneous word wn and each dictionary word d to create a list d′ of all
dictionary words that have an ED less than a predefined threshold τ2. (3) Replace each
word in d′ with Pcombinedwn in a sentence and output the most frequent word sequence from
the dictionary.

We conducted an extensive study to select the best combinations of τ1 and τ2 by analyzing
the performance of the proposed LM in the defined context.

6.1.5 Experiment: Error Reduction Model

We evaluated each sub-module of the post-processing step. First, we evaluated the archi-
tecture for the DDA network. Second, we evaluated the performance of the proposed LM.
Finally, we identified the best thresholds values for computing numerical similarities.

6.1.5.1 Dataset

We used LIBRISPEECH LM corpus [218] to train and evaluate the post-processing mod-
ules. The dataset contains text from 14,500 public domain books. We first filtered out all
punctuation, casing, and non-alphanumeric tokens from the original text and extracted the
top 200,000 sentences as vocabulary.

6.1.5.2 Training and Evaluation of Various DDA Architectures

For training DDA, we randomly divided the dataset into 100,000 sentences as correct set
and remaining 100,000 as incorrect set. We then synthesized one character-level error to
each word of each phrase. To synthesize errors, we simulated the following four types of
error to each word in the following sequence: one deletion error (removal of one letter), one
transposition error (swapping of two adjacent letters), one replacement error (changing one
letter with another), and one insertion error (one additional letter). Table 6.2 presents the
statistics of the dataset used for training DDA. It was divided into a split of 80:20% as
training:testing set.

To select the best network architecture for DDA, we trained and evaluated four differ-
ent architectures (Table 6.3). All networks were implemented on the Keras deep-learning
platform with TensorFlow [1] as the backend and an NVIDIA GeForce 1080Ti as the GPU
board. We used Adam [159] as the optimization method for training. We trained the net-
works for 50 epochs with learning rate of 10−3, batch size of 128. Results revealed that the
DDA architecture with 5-layers having [128 64 32 64 128] nodes performed the best (Table
6.3). Hence, we used the DDA trained with this architecture to minimize potential errors in
the recognized output.
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Phrase Word Char C Word C Char I Word I Char

200,000 6,027,754 18,527,816 2,906,117 9,279,253 3,121,637 9,248,563

Table 6.2: Statistics of dataset used for training DDA. C Word, C Char, I Word, and I Char
stands for number of correct words, correct characters, incorrect words, and incorrect char-
acters respectively. The values are the total.

DDA Architecture WER
Number of Layers: [ Number of Nodes] Mean (%)

5: [256 128 64 128 256] 21.8
5: [128 64 32 64 128] 16.4
3: [128 64 128] 19.1
3: [64 32 64] 26.3

Table 6.3: Evaluation of various DDA architectures in terms of word error rate (WER).

6.1.5.3 Training and Evaluation of N-Gram Language Model

We evaluated the directional advantage of a count-based n-gram LM with state-of-the-art bi-
directional neural LM in terms of sentence error rate (SER)6, perplexity7, and computation
time. For a fair comparison, we trained both models from scratch using the LIBRISPEECH
dataset (Section 6.1.5.1). We divided the dataset in a split of 80:20% as training: testing
set. Count-based n-grams models were trained using the Natural Language Toolkit (NLTK)8

with Kneser-Ney smoothing [119, 53] to better estimate probabilities of unseen n-grams. Bi-
directional neural LM (Bi-LSTM) was trained using LSTM based recurrent units that have
two recurrent layers with 4,096 LSTM nodes in each layer, an input projection layer of size
128, and an output softmax layer over vocabulary. The model was trained end-to-end using
cross-entropy loss [308] with Adam [159] as the optimization method. The model was trained
for 60 epochs with batch size of 64 and learning rate of 1e−3. It was implemented based
on the Keras deep-learning platform with TensorFlow [1] as the backend. Both LMs were
trained and tested on NVIDIA GeForce 1080Ti GPU.

In the experiment, Bi-LSTM performed better than the count-based LMs in terms of SER
and perplexity (Table 6.4). However, it required extra computation time. Among count-
based LMs, the combined trigram LM (forward and backward) performed much better.

6Sentence error rate (SER) signifies the percentage of recognized sentences that are not an exact match
of the ground truth.

7Perplexity is the multiplicative inverse of the probability assigned to the sentence by the language model,
normalized by the number of words in the sentence. The lower the perplexity the better the language model.

8Natural Language Toolkit (NLTK), https://www.nltk.org/api/nltk.lm.html

https://www.nltk.org/api/nltk.lm.html
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Sentence Error Rate (SER) %

Bigram Trigram Bi-LSTM
Forward Backward Combined Forward Backward Combined

27.4 30.9 26.7 24.4 27.6 16.5 15.3

Perplexity

Bigram Trigram Bi-LSTM
Forward Backward Combined Forward Backward Combined

51.3 60.1 48.7 44.1 48.3 41.4 39.8

Computation Time (Second)

Bigram Trigram Bi-LSTM
Forward Backward Combined Forward Backward Combined

1.8 1.7 3.1 1.5 1.9 3.4 9.2

Table 6.4: Comparison between forward, backward and combination of both (forward +
backward) n-gram LM with Bi-LSTM LM. Reported sentence error rate (SER), perplexity,
and computation time are average of all values. The proposed repair model uses the combined
trigram model.

Besides, it yielded a 7.27% and 3.86% higher SER and perplexity, respectively, and a 5.8
seconds (∼ 170.5%) lower computation time than Bi-LSTM. Hence, considering the negligible
percentage differences in SER and perplexity and a large difference in computation time, we
decided to use the combination of forward and backward trigram LM in our repair model.

6.1.5.4 Selection of Best Combinations of τ1 and τ2 to Compute Numerical
Similarity

To select the best combinations of τ1 and τ2, we evaluated the proposed LM for various
combinations of τ1 and τ2, in terms of true positive rate (TPR) and false positive rate
(FPR), defined as:

TPR =
TP

TP + FN
and FPR =

FP

FP + TN
(6.11)

TP : True positive is the total number of correct words identified as correct.
FP : False positive is the total number of incorrect words identified as correct.
TN : True negative is the total number of incorrect words identified as incorrect.
FN : False negative is the total number of correct words identified as incorrect.

Each curve in Fig. 6.3 signify TPR vs. FPR for different sets of τ1 and τ2. It can be
clearly seen that the LM with τ1 = 0.7, τ2 = 2 performed best among all cases since it has a
much higher TPR and a lower FPR.
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Figure 6.3: Performance comparison in terms of TPR and FPR of proposed LM for various
values of τ1 and τ2

To summarize, the post-processing step include: 5-layer DDA with bi-directional count-
based trigram LM, followed by numerical similarity with τ1 = 0.7, τ2 = 2.

6.1.6 Performance Evaluation: Independence of the Model

Since our goal was to develop a repair model that can be used with a range of speech and
silent speech recognizers, we evaluated its effectiveness with both LipType [See Chapter 5]
and several other popular speech and silent speech recognizers. Particularly, we picked the
following six pre-trained models.

6.1.6.1 Silent Speech Recognizers

1. LipNet [25] model uses a neural network architecture for lip reading that maps
variable-length sequences of video frames to text sequences, making use of deep 3-
dimensional convolutions, a recurrent network, and the connectionist temporal classifi-
cation loss [107], trained entirely end-to-end. It was trained on the GRID dataset [66]
which comprises of short and formulaic videos that show a well-lit person’s face while
uttering a highly constrained vocabulary in a specific order.

2. LipType [See Chapter 5] model follows the same architecture as LipNet except it
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replaces deep 3-dimensional convolutions with a combination of shallow 3-dimensional
convolutions (1-layer) and deep 2-dimensional convolutions (34-layer ResNet) inte-
grated with squeeze and excitation (SE) blocks (SE-ResNet). It was also trained on
the GRID dataset.

3. Transformer [5] model comprises of two sub-modules: a spatio-temporal visual fron-
tend that takes a sequence of video frames to extract one feature vector per frame and
a sequence processing backend comprised of encoder-decoder structure with multi-head
attention layers [286] that generates character probabilities over the vocabulary. It
was trained on Lip Reading in the Wild (LRW) [58] and the Lip Reading Sentences 2
(LRS2) [5] datasets.

6.1.6.2 Speech Recognizers

1. DeepSpeech [111] is a speech recognition model developed using end-to-end training
of a large recurrent neural network (RNN). It converts an input speech spectrogram
into a sequence of character probabilities. It was trained on the Wall Street Journal
(WSJ) [224], Switchboard [100], and Fisher [62] datasets.

2. Kaldi [234] is an open-source toolkit for speech recognition written in C++, which
uses Finite State Transducer (OpenFST) library [244] for training recognition models.
It comprises of multiple speech recognition recipes. For our work, we used a pre-trained
chain English model (Api.ai) recipe, trained on the LIBRISPEECH dataset [218].

3. Wave2Letter [65] is an end-to-end model for speech recognition, that combines a con-
volutional network-based acoustic model and a graph decoding. It is trained to output
letters without the need for force aligning them. It was trained on the LIBRISPEECH
[218] dataset.

We evaluated these models on seen and unseen data. For seen data, we randomly selected
30 phrases from each model’s training dataset. For unseen data, we randomly selected 30
phrases from MacKenzie and Soukoreff dataset [188]. Unseen data was common for all
models. All selected phrases are listed in the Appendix A.

6.1.6.3 Experimental Conditions

We evaluated the silent speech models under three lighting conditions. Due to the spread
of COVID-19, all conditions were simulated in a private room without any artificial light
sources.

• Dark light: video recorded during nighttime (9:00–11:00 PM).

• Dusky light: video recorded during evening time (6:00–8:00 PM).

• Daylight: video recorded during daytime (1:00–3:00 PM).
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Likewise, speech models were evaluated under three noisy conditions, simulated in a private
room.

• Indoor noise: audio recording with an indoor noise, simulated by playing a prere-
corded CNN news report in the background.

• Outdoor noise: audio recording in a public place, simulated by playing a prerecorded
busy marketplace noise.

• Quiet: audio recording in a quiet room.

6.1.6.4 Apparatus

We developed a custom Android application with Android Studio 3.1.4 for data collection.
The application included a landing page and a data collection page. The landing page
included a drop-down menu to select recording conditions and a Start button to start a
session. The data collection page included a video viewer to display the device’s front
camera, an area to presented phrases, and a Record/Stop toggle button to start and stop
recording. The application recorded all videos and automatically logged the duration of a
session, device specification (display and camera resolution, etc.), light intensity, and sound
level.

6.1.6.5 Participants

Twelve volunteers aged 19—54 years (M = 27.9, SD = 9.15) took part in the study (Fig. 6.4).
They were all proficient in the English language. Five of them identified themselves as women
and seven identified as men. They all had at least five years of experience with smartphones.
All of them were Android-based smartphone users, and users of a voice assistant system for
at least one year. Most of them had experience with multiple voice assistants, including
Amazon Alexa, Google Assistant, and Apple Siri. They all received US $20 for participating
in the study.

Dark Light Dusky Light Day Light User with Custom Application

Figure 6.4: Four volunteers participating in the user study.
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6.1.6.6 Design

We used the following within-subjects design for the study:

12 participants ×
2 methods (speech, silent speech) ×
3 conditions (indoor, outdoor, quiet / dark, dusky, day), counterbalanced ×
2 data types (seen, unseen) ×
3 models (DeepSpeech, Kaldi, Wave2Letter / LipNet, LipType, Transformer), coun-
terbalanced ×
30 phrases = 12,960 phrases in total.

6.1.6.7 Procedure

The study was conducted remotely due to the spread of COVID-19. We explained the
purpose of the study and scheduled individual Zoom9 video calls with each participant ahead
of time. We instructed them to join the call from a quiet room to avoid any interruptions
during the study. In the first call, we demonstrated the application and collected their
consents and demographics using electronic forms. We then shared the application (APK
file) with them and guided them through the installation process on their smartphones.
The first session started shortly after that. The application displayed one phrase at a time.
Participants pressed the Record button, spoke or silently spoke10 the phrase, then pressed
the Stop button to see the next phrase. In the noisy conditions (Section 6.1.6.3), we shared
the respective audio clips with the participants and instructed them to play the clips slightly
louder than a normal conversation. Log analysis reveled that, on average, participants played
the indoor noise at 48.75 db (min = 42 db, max = 58 db) and outdoor noise at 55.25 db
(min = 49 db, max = 66 db). To simulate different lighting conditions, silent speech sessions
were scheduled at different times of the day. Log analysis revealed that, on average, room
light intensity was 0.93 lux (min = 0 lux, max = 2 lux) in the dark light condition, 7.86
lux (min = 6 lux, max = 11 lux) in the dusky light condition, and 58.0 lux (min = 52 lux,
max = 61 lux) in the daylight condition. All sessions followed the same format, expect for
demonstration and installation. Upon completion of each session, participants shared the
logged data with us by uploading those to a cloud storage under our supervision. In total,
there were 24 recording sessions (Table 6.5). A researcher monitored all sessions via Zoom.
Upon completion of the study, we evaluated the repair model with the six recognition models
using the collected audio and video clips. For speech, first, we passed the recorded audio to
a speech recognizer, then we post-processed the output to auto-correct errors. We did not
pre-process the data since speech only utilizes audio information, thus, is not affected by
poor lighting conditions. For silent speech, first, we processed each recorded video with the
pre-processing technique to enhance the lighting of the clips, then we passed the processed

9Zoom, https://zoom.us
10Uttering phrases without vocalizing any sound

https://zoom.us
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Speech

Session Condition Model Dataset
1 Indoor DeepSpeech Fisher [62] (S)
2 Outdoor DeepSpeech Fisher [62] (S)
3 Quiet DeepSpeech Fisher [62] (S)
4 Indoor Kaldi LIBRISPEECH [218] (S)
5 Outdoor Kaldi LIBRISPEECH [218] (S)
6 Quiet Kaldi LIBRISPEECH [218] (S)
7 Indoor Wave2Letter LIBRISPEECH [218] (S)
8 Outdoor Wave2Letter LIBRISPEECH [218] (S)
9 Quiet Wave2Letter LIBRISPEECH [218] (S)
10 Indoor DeepSpeech/Kaldi/Wave2Letter Mackenzie and Soukoreff [188] (U)
11 Outdoor DeepSpeech/Kaldi/Wave2Letter Mackenzie and Soukoreff [188] (U)
12 Quiet DeepSpeech/Kaldi/Wave2Letter Mackenzie and Soukoreff [188] (U)

Silent Speech

13 Dark LipNet Grid [66] (S)
14 Dusky LipNet Grid [66] (S)
15 Day LipNet Grid [66] (S)
16 Dark LipType Grid [66] (S)
17 Dusky LipType Grid [66] (S)
18 Day LipType Grid [66] (S)
19 Dark Transformer LRS [5] (S)
20 Dusky Transformer LRS [5] (S)
21 Day Transformer LRS [5] (S)
22 Dark LipNet/Transformer/LipType Mackenzie and Soukoreff [188] (U)
23 Dusky LipNet/Transformer/LipType Mackenzie and Soukoreff [188] (U)
24 Day LipNet/Transformer/LipType Mackenzie and Soukoreff [188] (U)

Table 6.5: Recording sessions for different noisy and lighting conditions with their cor-
responding recognition models and datasets. S and U stands for seen and unseen data,
respectively.
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videos to a silent speech recognizer, finally we post-processed the output to auto-correct
errors.

6.1.7 Results

For evaluation, we considered all pre-trained models as baselines and compared with their
respective repaired versions in terms of WER, WPM, and CT. To ensure a fair comparison
of computation time, we evaluated all models on NVIDIA GeForce 1080Ti GPU board.
Results revealed that the proposed repair model significantly reduce error rates of all pre-
trained models regardless of data type and experimental conditions.

                                                          (a)                                                                                                                                                                          (b)                                                                                                                                                        

Seen Unseen

                                                          (c)                                                                                                                                                                          (d)                                                                                                                                                        

                                                          (e)                                                                                                                                                                          (f)                                                                                                                                                        

Figure 6.5: Performance evaluation of the three investigated speech recognition models with-
out/with the proposed repair model in terms of a) WER-Seen, b) WER-Unseen, c) WPM-
Seen, d) WPM-Unseen, e) CT-Seen, and f) CT-Unseen. Each condition has 360 data points.
Reported values are the average of all values. The values inside the brackets are standard
deviations (SD). Error bars represent ±1 SD.

Fig. 6.5 shows the effectiveness of repair model on the three examined speech recognition
models. It can be clearly observed that the repair model resulted in substantial reductions
in error rates for all pre-trained models under all noisy conditions. With DeepSpeech, it
showed 37.5% reduction in WER for seen data and 26.7% reduction for unseen data. With
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Kaldi, it showed 31.5% reduction in WER for seen data and 38% reduction for unseen data.
With Wave2Letter, it showed 26.8% reduction in WER for seen data and 38.3% reduction
for unseen data. On average, for all models, we observed 8.4% reduction in WPM and 5.9
seconds increase in CT on both seen and unseen data. Overall, Repaired Kaldi performed
the best among all pre-trained models.

                                                          (a)                                                                                                                                                                          (b)                                                                                                                                                        

Seen Unseen

                                                          (c)                                                                                                                                                                          (d)                                                                                                                                                        

                                                          (e)                                                                                                                                                                          (f)                                                                                                                                                        

Figure 6.6: Performance evaluation of the three examined silent speech recognition models
without/with the proposed repair model in terms of a) WER-Seen, b) WER-Unseen, c)
WPM-Seen, d) WPM-Unseen, e) CT-Seen, and f) CT-Unseen. Each condition has 360 data
points. Reported values are the average of all values. The values inside the brackets are
standard deviations (SD). Error bars represent ±1 SD.

Fig. 6.6 shows the effectiveness of the repair model on silent speech recognition models.
The performance of the repair model followed a similar trend as the speech models. It showed
substantial reductions in error rates for all lighting conditions. With LipNet, it showed 58.1%
reduction in WER for seen data and 15.5% reduction for unseen data. With LipType, it
showed 61.9% reduction in WER for seen data and 16.3% reduction for unseen data. With
Transformer, it showed 51.5% reduction in WER for seen data and 38.5% reduction for
unseen data. On average, for all models, we observed 10.9% reduction in WPM and 8
seconds increase in CT on both seen and unseen data. For unseen data, we observed a
negligible reduction in WER for LipNet and LipType compared to the Transformer model.
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We speculate that this is because LipNet and LipType are trained on a relatively small
GRID dataset [66] that has a smaller number of word-level classes (shorter phrases). This
resulted in a much better performance for their repair models with seen data as most of
the silently spoken words were in its vocabulary. Likewise, it did not perform as well with
unseen data as many of the silently spoken words were not in its vocabulary (thus could
not be fully processed by the language model). Transformer, in contrast, is trained on LRS
dataset [5] that has a larger number of word-level classes (longer phrases). This resulted in
a much lower WER for repaired Transformer with unseen data as it provided the language
model with more accurate words than LipType. Note that the language model is part of
the repair model not the recognizer. It is trained on a more comprehensive LIBRISPEECH
dataset [218]. But its effectiveness is reliant on the vocabulary of the recognizer.

We also performed extensive ablation studies on each submodule of our model to demon-
strate their contribution to the overall performance gains.

6.1.8 Ablation Studies

In this section, we present the results of various ablation studies performed to demonstrate
the contribution of each submodule of our model to the overall performance gains.

6.1.8.1 With only Pre-processing

The purpose of this study was to analyze the effects of pre-processing on silent speech
recognition model’s performance in terms of WER, WPM, CT. For evaluation, we considered
all pre-trained models as baselines and compared with their conjunction with pre-processing.
Results revealed that the proposed pre-processing module substantially reduced the error
rates of all pre-trained models (Table 6.6). In the study, pre-processing with LipNet showed
15% reduction in WER with seen and 7% reduction with unseen data. With LipType,
it showed 12% reduction in WER with seen and 5.5% reduction with unseen data. With
Transformer, it showed 24% reduction in WER with seen and 8% reduction with unseen
data. On average, for all models, there were 5% reduction in WPM and 2 sec. increase
in CT with both seen and unseen data. Note that the performance of these models with
pre-processing and post-processing (repaired) are shown in Fig. 6.6.

6.1.8.2 Effects of Individual Error Correction Module

We also analyzed the effects of individual error correction modules with the LipType model
in terms of WER and CT. All the presented results are calculated with seen data. Results
demonstrated that each submodule made a significant contribution to the overall perfor-
mance improvement of the repair model (Table 6.7).
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Model Seen Unseen
WER WPM CT WER WPM CT

LipNet 49.4 4.9 14.3 96.5 4.8 14.1
PP + LipNet 42.0 4.8 16.4 89.5 4.6 15.9

LipType 45.9 6.5 6.0 94.1 6.2 6.2
PP + LipType 40.9 5.6 8.5 88.9 6.0 8.1

Transformer 56.2 6.0 14.9 82.4 5.9 14.5
PP + Transfomer 42.5 5.9 16.4 76.0 5.6 15.8

Table 6.6: Performance evaluation of the three examined silent speech recognition models
without/with the Pre-processing (PP) module in terms of WER, WPM and, CT for seen
and unseen data.

Method WER CT

LipType 45.9 6.0
PP + LipType 40.9 8.3

PP + LipType + DDA 29.7 11.1
PP + LipType + DDA + SC 27.5 11.7

PP + LipType + DDA + SC + LM 24.1 14.2
PP + LipType + DDA + SC + LM + ED 20.5 15.1

Table 6.7: Effect of individual error correction module on LipType’s WER and CT with
seen data (Pre-processing: PP; DDA: Deep denoising autoencoder; SC: Spell Checker; LM:
Language Model; ED: Edit Distance). We considered DDA + SC + LM + ED as the
post-processing module.

6.1.8.3 Correction Classification

In this study, we analyzed the types of correction made by the post-processing module. For
this, we classified all errors by the following criteria:

• Whether the correct word is substituted with other word(s), substitution error.

• Whether the new word(s) is inserted, insertion error.

• Whether the correct word(s) is deleted, deletion error.

After analysis, we observed that Silent Speech has 2% insertion, 27% deletion, 71%
substitution, (34% of these were on short words <= 3 chars, 11% of these were on long words
> 3 chars, 29% of these were in starting of the phrase <= length(phrase)/2-1, 14% of these
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were in ending of the phrase > length(phrase)/2). However, speech has 38% insertion, 21%
deletion, 41% substitution (12% of these were on short words <= 3 chars, 18% of these were
on long words > 3 chars, 25% of these were in starting of the phrase <= length(phrase)/2-1,
11% of these were in ending of the phrase > length(phrase)/2).

Silent speech has 94.7% fewer insertion errors than speech. We speculate that this is
because, for speech input, the recognition model captures background noises and recognizes
them as words which resulted in more insertion errors. Unlike speech recognition, silent
speech recognition just uses visual information for recognition which does not get affected by
background noise. Besides, silent speech has 73.1% more substitution errors. We hypothesize
that this is because it is more difficult to distinguish between homophones with just visual
information due to ambiguity in lip movements i.e., different characters that produce exactly
the same lip sequence (e.g. ‘p’ and ‘b’). This may have resulted in more substituted words.

6.2 Discussion

We developed an independent repair model that processes video input for poor lighting condi-
tions and corrects potential errors in output for increased accuracy. We evaluated the repair
model’s effectiveness with various speech and silent speech recognizers. To demonstrate its
benefit, we selected six pre-trained models, i.e., three for speech and three for silent speech.
We then conducted a user study with twelve participants to collect diverse data under real-
world conditions. For speech models, we collected data in indoor, outdoor, and quiet noisy
conditions. For silent speech, we collected data in dark, dusky, and day lighting conditions.
We then evaluated the impact of the repair model on each model’s performance using the
collected data. Results showed significant improvement in the performance of all models.
Models augmented with the repair model outperformed the original models drastically for
all experimental conditions. For speech, we observed 32% reduction in WER, 5.8 seconds
increase in CT, and 8.1% reduction in WPM; whereas for silent speech, we observed 57.2%
reduction in WER, 7.9 seconds increase in CT, and 10.3% reduction in WPM. Since speech
models do not involve preprocessing, their repaired models showed 26.2% less CT than silent
speech models.

On comparing the performance of LipNet and LipType [See Chapter 5] from Fig. 5.2
and Fig. 6.6(a):Day, we observed a 45-50% reduction in their WER. We speculate that this
is because the dataset used to evaluate both models for seen speakers comprises of uniform
visual attributes (same skin tone, accent, pace of speech, etc.) (Fig. 5.2). However, the
dataset for final evaluation used new speakers’ data that solicited more variability in terms
of speaker characteristics (Fig. 6.6(a):Day). We also observed that the repaired Transformer
performed much better than the other silent speech models on unseen data. We speculate
that this is because Transformer is trained on LRS dataset that has a larger number of word-
level classes (longer phrases). This resulted in a much lower WER for repaired Transformer
with unseen data as it provided the language model with more accurate words than LipType.
Overall, empirical results demonstrate the effectiveness of the repair model on all recognition
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models for improving accuracy.
Despite these improvemnts, research shows that no matter how robust the speech recog-

nition system is, it could still fail due to a variablity in user characteristics. Speaking rate
for example, is a fundamental user characteristics that can influence speech recognition per-
formance due to the variation in acoustic properties of human speech production, such as
vowel and consonant duration, the transition between phoneme and stops, and distortions
in the temporal and spectral domains. Therefore, in the next step, we will investigate the
effects of speaking rate on silent speech recognition.



55

Chapter 7

Effects of Speaking Rate on Silent
Speech Recognition

Speaking rate is a fundamental user characteristics that can influence speech recognition
performance due to the variation in acoustic properties of human speech production, such as
vowel and consonant duration, the transition between phoneme and stops, and distortions in
the temporal and spectral domains [101, 91, 305]. Some studies report that faster speaking
rates result in higher error rates [91, 261, 265, 201], whereas some identified slower speaking
rates to be more error prone [101, 266]. This disagreement encourages re-investigation of the
effects of speaking rates on speech recognition performance. Besides, no such investigations
have been conducted for silent speech recognition. This Chapter explores whether native
and non-native speakers interact differently with speech and silent speech-based methods,
whether speaking rate affects recognition rates of these methods, the optimal speaking rates
for increased accuracy, and whether the effects of speaking rate are different for native and
non-native speakers.

7.1 User Study 1: Speaking Rate

This study investigates whether native and non-native speakers speak at different rates when
interacting with speech and silent speech-based methods.

7.1.1 Apparatus

We developed a custom app with Android Studio 3.1.4 (Fig 7.1). Participants used it on
their own Android smartphones. Its landing page included a drop-down menu to select a
recording condition (speech, silent speech) and a Start button to start data collection. The
data collection page displayed the front camera in real-time, random phrases from a set [188]
for participants to speak or silently speak, and a Record and Stop toggle button to start and
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stop recording, respectively. The app stored all videos locally and automatically logged the
duration of each spoken phrase.

(a) (b)

Figure 7.1: (a) Screenshots of the custom app used in the study: the landing page (left) and
the data collection page (right). (b) Four volunteers participating in the first study through
a teleconferencing system.

7.1.2 Participants

Twelve volunteers took part in the user study (Fig. 7.1). Table 7.1 presents the demographics
of the participants divided into native and non-native groups. Originally, we wanted to
recruit equal number of native and non-native speakers, but were unable to do so due to the
spread of COVID-19.

Table 7.1: Demographics of the participants.

Native (N = 4) Non-native (N = 8)
Age 22–54 years (M = 32.2, SD = 14.7) 19–33 years (M = 25.8, SD = 4.7)
Gender 1 female, 3 male 4 female, 4 male
Experience with speech 1–8 years (M = 3.5, SD = 3.3) 1–4 years (M = 1.2, SD = 0.8)
Experience with silent speech None None

7.1.3 Design and Metrics

The study had one within-subjects independent variable: medium, with three levels: baseline,
speech, and silent speech; and one between-subjects independent variable: speaker, with two
levels: native and non-native. The baseline condition recorded participants’ speaking rates in
human-human communication, while the speech and silent speech conditions recorded their
speaking rates with a speech and silent speech recognizer, respectively, through the mobile
app. We used a Wizard-of-Oz setup, that is, the app did not include actual recognizers
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but pretended to accurately recognize all spoken and silently spoken phrases as long as the
participant’s face was visible to the app. For the baseline condition, we extracted one minute
of speech from the conversations we had with the participants during the app installation
and demonstration process. In the speech and silent speech conditions, participants spoke
and silently spoke 30 phrases from a set [188], respectively (720 phrases, in total). The
dependent variables were:

• Time per phoneme (TPP) is the average time participants took to utter a phoneme
(in milliseconds), calculated using the following equation: TPP = time per phrase

total phoneme in phrase
.

Total phoneme in a recognized phrase was counted with the Pronouncing API1 that
uses the Carnegie Mellon University (CMU) Pronouncing Dictionary2 to identify phonemes.

• Actual words per minute (A-WPM) is the most commonly used metrics for calcu-
lating speaking rate [49, 16]. It measures the average number of actual words spoken
in a minute. This metric is different from the traditional WPM metric that considers
five characters as one word regardless of the actual number of words in a phrase [19].
A-WPM is calculated using the following equation: WPM = total words

number of minutes
.

7.1.4 Procedure

The study was conducted remotely via Zoom due to COVID-19. We scheduled individual
video calls with each participant. They were instructed to join the call from a quiet room
to avoid any interruptions during the study. In the call, we first explained how speech and
video-based silent speech recognition systems work, then demonstrated the custom app and
collected their informed consents and demographics using electronic forms. We then shared
the app installation file (APK) with them and guided them through the installation process
on their smartphones. The data collection session started after that, where the app displayed
one phrase at a time. Participants were instructed to press the Record button, speak or
silently speak the presented phrase, then pressed the Stop button. They were told that the
system will process the spoken or silently spoken phrase when they press the Stop button. If
the phrase is correctly recognized, it will display the next phrase, otherwise will ask them to
re-speak the same phrase. However, in reality, the app did not include a recognizer, instead
pretended to correctly recognize all spoken and silently spoken phrases. The Zoom sessions
were recorded to extract one minute of speech for the baseline condition (Section 7.1.3).
Participants were not informed of this during the study to avoid a potential Hawthorne
effect [184]. Upon completion, participants shared all locally stored video clips and log files
with us by uploading those to a cloud storage. They then took part in an interview about
their experience with the app. Finally, we debriefed them about the Wizard-of-Oz setup

1Pronouncing API: https://pronouncing.readthedocs.io/en/latest/pronouncing.html#pronouncing.
phones for word

2CMU Pronouncing Dictionary: http://www.speech.cs.cmu.edu/cgi-bin/cmudict

https://pronouncing.readthedocs.io/en/latest/pronouncing.html#pronouncing.phones_for_word
https://pronouncing.readthedocs.io/en/latest/pronouncing.html#pronouncing.phones_for_word
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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and informed them that clips from the demo and installation Zoom session will be used to
measure their natural speaking rates.

7.2 Results

A complete study took 45–60 minutes. A Shapiro-Wilk test revealed that the response
variable residuals were normally distributed. A Mauchly’s test indicated that the variances
of populations were equal. Hence, we used a one-way repeated-measures ANOVA to study
the effects of medium, a one-way between-subjects ANOVA for the effects of speaker, and a
mixed-design ANOVA for the medium × speaker interaction effects [18].

(a) (b)

Figure 7.2: (a) Average time per phoneme (TPP) and (b) average actual words per minute
(A-WPM) for native and non-native speakers with the three investigated mediums. The
values inside the brackets are standard deviations (SD). The error bars represent ±1 SD.

7.2.1 Time per Phoneme (TPP)

An ANOVA identified a significant effect of medium (F2,11 = 697.59, p < .0001) on TPP. On
average, participants took 107.5 ms (SD = 4.6), 161.6 ms. (SD = 5.5), and 178.7 ms (SD =
8.8) to utter a phoneme in the baseline, speech, and silent speech conditions, respectively.
An ANOVA also identified a significant effect of speaker (F1,10 = 1212.35, p < .0001) on
TPP. On average, native participants took 161.26 ms (SD = 10.78) to utter a phoneme,
while non-native participants took 173.14 ms (SD = 13.36). There was also a medium ×
speaker interaction effect (F1,20 = 66.02, p < .0001). Fig. 7.2 (a) presents average TPP for
native and non-native speakers with the three mediums.

7.2.2 Actual Words per Minute (A-WPM)

An ANOVA identified a significant effect of medium (F2,11 = 1783.18, p < .0001) on A-
WPM. On average, participants yielded 109.7 (SD = 4.6), 89.5 (SD = 5.2), and 74.8 (SD =
3.6) A-WPM in the baseline, speech, and silent speech conditions, respectively. An ANOVA
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also identified a significant effect of speaker (F1,10 = 1467.96, p = .0001) on A-WPM. On
average, native participants yielded 87.49 A-WPM (SD = 9.04), while non-native participants
yielded 80.26 A-WPM (SD = 8.42). There was also a medium × speaker interaction effect
(F1,20 = 17.18, p < .0001). Fig. 7.2 (b) presents average A-WPM for native and non-native
speakers with the three mediums.

7.3 Discussion

Both native and non-native speakers spoke at much slower rates compared to their usual
speaking rates while using the speech and the silent speech recognizers. On average, partic-
ipants took 33.4% and 39.8% extra time to utter a phoneme with speech and silent speech,
respectively. Likewise, A-WPM dropped by 22.5% and 46.6%, respectively. Consequently, a
post-hoc Tukey-Kramer multiple-comparison test identified two distinct groups: {baseline}
and {speech, silent speech}. The post-study interview revealed that participants spoke slowly
while using these methods thinking that it would increase their recognition rates. However,
there was no actual effects on phrase recognition as the Wizard-of-Oz approach pretended
to correctly recognize all spoken or silently spoken phrases. Since all participants were ex-
perienced users of various voice assistant systems, it is likely that the unreliability of these
systems encouraged them to reduce the rate of their speech. Relevantly, a participant (fe-
male, 27 years, non-native) said, “It [speaking slowly] is mostly due to lack of proficiency
and different accent. I always try to speak slowly and try to match accent to make the speech
assistant understand me which is sometimes awkward and irritating”. Surprisingly, they
spoke at a much slower rate when using a silent speech recognizer compared to when using a
speech recognizer. This could be either because participants never used a silent speech-based
method before or the fact that video-based silent speech recognizers detect speech based on
lip movements rather than the sound produced by the speakers (Section 7.1.4), giving them
the impression that the method requires extra finesse for an acceptable accuracy rate. Post-
study interview revealed that participants overemphasized their lip movements during silent
speech to “aid” the recognition process.

Results revealed that non-native speaker spoke at a slower rate than native speakers
(about 7% slower TPP). This is not surprising since many studies found out that average
speaking rate for non-native speakers is slower than for native speakers as ”a general lack of
proficiency and experience can result in slower speaking rates” [27, 76, 109, 69, 68]. However,
both native and non-native speakers slowed down at comparable rates when interacting with
speech (∼34% slower TPP) and silent speech (∼40% slower TPP) recognizers. This finding
is interesting as it suggests that these slower speaking rates were not caused by the lack
of proficiency or experience but due to the speakers’ skepticism about the reliability of the
state-of-the-art speech and silent speech recognizers. Based on these findings, we recommend
evaluating new speech and silent speech recognizers with both native and non-native speakers
of the target language, and report the results of the two groups separately due to their
significantly different speaking rates. The fact that users slow down when interacting with
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speech and silent speech recognizers can also be exploited for improved performance.
We were unable to study any potential effects of recognition error on speaking rate since

the Wizard-of-Oz setup collected data without any errors. However, users are likely to
adjust their interaction behavior when interacting with an error-prone system, like observed
in other recognition systems [21]. Another limitation of the study is using different scenarios
in the baseline and the speech conditions. Speaking rate for the baseline was calculated
in continuous computer-mediated communication, while the same for the speech and the
silent speech were calculated from manually segmented phrases. It is unknown whether
the additional latency introduced by the manual segmentation affected the speaking rate in
any way. It is also unclear if the speaking rates are different for computer-mediated and
face-to-face communications, although prior works reported other behavioral changes [154].

7.4 User Study 2: Effects of Speaking Rate

This study investigated whether speaking rate affects recognition rates of state-of-the-art
speech and silent speech recognizers.

7.4.1 Participants and Design

We invited the participants of the previous study (Section 7.1.2) to take part in this study.
The study had two within-subjects independent variable: medium and speaking rate. The
former had two levels: speech and silent speech, and the latter had seven levels: 0.25x, 0.5x,
0.75x, 1x, 1.25x, 1.5x, and 1.75x of the actual speaking rates of the participants. These
rates were selected based on YouTube’s playback speed scale, ranging from quarter speed
(0.25x) to double speed (2x). Among these, we selected the actual rate (1x), the top three
slower rates (0.25x, 0.5x, 0.75x) and the top three faster rates (1.25x, 1.5x, 1.75x), resulting
in seven rates in total. The study had one between-subjects independent variable: speaker,
with two levels: native and non-native. Participants spoke 30 phrases from the respective
model’s training dataset [see Chapter 6 A.1 & A.5]], which were post-processed to achieve
the seven speaking rates, resulting in 30 phrases × 2 mediums × 7 speaking rates = 420
phrases per participant. The dependent variable was the following performance metric:

• Word accuracy (WA) measures the total number of words accurately recognized from
the total number of spoken words. It is calculated using the following equation, where
S is the number of substitutions, D is the number of deletions, I is the number of
insertions, N is the number of words in the ground truth: WA = 1− (S+D+I)

N
.

7.4.2 Apparatus and Procedure

We modified the custom app used the previous study to replace the phrases [188] with phrases
from the examined speech and silent speech recognition models’ training datasets. We also
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Figure 7.3: Average word accuracy rates (%) of the speech and the silent speech recognition
methods with the seven examined speaking rates. The values inside the brackets are standard
deviations (SD). The error bars represent ±1 SD.

included a new condition in the app, where participants are instructed to read the presented
phrases. Recorded video clips were time-expanded for the slower rates and time-compressed
for the faster rates using the FFmpeg 3 platform. All clips were then processed using two
state-of-the-art pre-trained recognition models for speech and silent speech: Kaldi (Api.ai)
[234] and LipType [see Chapter 6], respectively.

The study used the same procedure as the first study except for the demonstration and
the post-study debrief and interview. The custom app displayed one phrase at a time,
and participants were instructed to read it at a rate in which they would usually speak
with another person. Note that, despite the different speaking rates, each participant spoke
exactly the same number of words in each condition.

7.5 Results

A complete study took about 30 minutes. A Shapiro-Wilk test revealed that the response
variable residuals were normally distributed. A Mauchly’s test indicated that the variances
of populations were equal. Hence, we used a two-way repeated-measures ANOVA to study
the effects of medium and speaking rate, a one-way between-subjects ANOVA to to study
the effects of speaker, and a mixed-design ANOVA to study the interaction effects [18].

3A Complete, Cross-Platform Solution to Record, Convert and Stream Audio and Video: https://www.
ffmpeg.org

https://www.ffmpeg.org
https://www.ffmpeg.org
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7.5.1 Word Accuracy (WA)

An ANOVA identified a significant effect of medium (F1,11 = 64769.13, p < .0001) and
speaking rate (F6,66 = 697.21, p < .0001) on WA. The medium × speaking rate interaction
effect was also statistically significant (F6,66 = 33009.02, p < .0001). Fig. 7.3 illustrates the
average WA of the speech and the silent speech recognition methods with the seven speaking
rates. An ANOVA also identified a significant effect of speaker (F1,10 = 805.74, p < .0001).
The speaker × medium (F1,10 = 64.54, p < .0001) and the speaker × speaking rate ×
medium (F6,60 = 543.30, p < .0001) interaction effects were also statistically significant. Fig.
7.4 illustrates the average WA of the speech and the silent speech recognition methods for
native and non-native speakers with the seven examined speaking rates.

7.5.2 Error Analysis

We conducted a post-hoc analysis of the recognized phrases at the usual speaking rate (x1)
to find out the distribution of insertion errors (extra words are incorrectly inserted), deletion
errors (correct words are incorrectly omitted), and substitution errors (words are substituted
with incorrect words) [29]. Table 7.2 presents the results.

7.6 Discussion

Both speech and silent speech methods performed well with regular (1x) speaking rate. On
average, speech and silent speech methods yielded 82% (SD = 4.6) and 80% (SD = 3.5) WA,
respectively, with regular speaking rate. The effects of speaking rate was different for native
and non-native speakers. At regular rate, speech and silent speech methods were 9.9% and
7.5% more accurate, respectively, for native speakers than non-native speakers. However,

Figure 7.4: Average word accuracy rates (%) of the speech and silent speech recognition
methods for native and non-native speakers with the seven examined speaking rates. The
values inside the brackets are standard deviations (SD). The error bars represent ±1 SD.
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Table 7.2: Distribution of insertion, deletion, and substitution errors in the phrases recog-
nized by the speech and the silent speech recognizers.

Speech Silent Speech
All Native Non-Native All Native Non-Native

Insertion 38% 12% 29% 2% 4% 22%
Deletion 21% 41% 37% 27% 30% 21%
Substitution 41% 47% 34% 71% 66% 57%

for both native and non-native speakers, the performance of the speech recognition method
dropped substantially with speaking rates lower than 0.5x and higher than 1.25x (Fig. 7.4).
A post-hoc Tukey-Kramer multiple-comparison test revealed that 0.75x speaking rate was
significantly more accurate than the other speaking rates. Likewise, the performance of
the silent speech recognition method dropped substantially with rates lower than 0.75x and
higher than 1.25x for both native and non-native speakers (Fig. 7.4). Like speech, a post-hoc
Tukey-Kramer multiple-comparison test identified 0.75x as significantly more accurate than
the other examined speaking rates. These findings suggest that speaking slightly slower than
usual can indeed increase the reliability of speech and silent speech recognizers, regardless
of the speaker’s proficiency and experience in English. Results also suggest that 0.5–1.25x is
the optimal range for speech and 0.75–1.25x is the optimal range for silent speech for higher
accuracy rates. We speculate, this is due to the fact that much faster speaking rates can
cause frequent and stronger pronunciation changes while much slower speaking rates tend
to add unnecessary pauses between phonemes [191]. The average natural speaking rate was
slower in this study than the first study since, here, participants read the phrases, which is
slower than speaking [137, 136, 192, 212].

Error analysis revealed that silent speech had 94.7% lower insertion errors than speech.
We speculate, this is because ambient noise in the audio affected the recognition of the
speech method. Silent speech, in contrast, uses visual information for recognition, thus
was not affected by background noise. Interestingly, speech committed 11% higher deletion
errors and 38% higher substitution errors for native speakers than non-native speakers. This
could be because faster rates resulted in overlaps between the words, making it difficult to
segment them. Silent speech also resulted in 81% lower insertion errors, 42% higher deletion
errors, and 16% higher substitution errors than non-native speakers, presumably for the same
reasons. Silent speech had 73.1% higher substitution errors than speech, which could be due
to the difficulty in distinguishing between different homophones with visual information as
multiple characters can produce the same lip movement sequence, such as for the letters ‘p’
and ‘b’.

The findings of this work highlight the importance of considering speaking rate in speech
and silent speech-based interfaces. While designing interfaces for these methods, the recog-
nition algorithms must be optimized for varying speaking rates and the characteristics of
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native and non-native speakers. Error analysis presented in this work could be used to iden-
tify areas that require extra effort to increase the respective method’s accuracy rates. The
findings could also provide guidance to users on improving speech and silent speech input
performance.

In spite of encouraging results, it is vital to note that the presented findings are either
based on Wizard-of-Oz or simulation studies, so they may vary when tested with the actual
system in a real-world setting. It is therefore imperative to test the modality with the real
system. In the next Chapter, we will investigate silent speech as a hands-free selection
method in eye-gaze pointing.
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Chapter 8

Silent Speech-Based Selection Method
for Eye-Gaze Pointing

Eye-gaze-based interaction is a promising modality for faster and seamless hands-free (also
known as contactless or touchless) interaction [262]. It enables people with limited motor
skills to interact with computer systems without using the hands [166, 7, 43, 140, 67]. It
is also beneficial in Situationally-Induced Impairments and Disabilities (SIID) [300, 253],
when the hands are incapacitated due to reasons such as performing a secondary task, minor
injuries, or unavailability of a keyboard [239]. Hands-free interaction is also of a particular
interest in situations when touching public devices is to be avoided to prevent the spread of
an infectious disease [134].

Eye tracking technologies measure a person’s eye movements and positions to understand
where the person is looking at any given time. In the past, eye tracking required expensive,
often non-portable extramural devices, which were slow and error prone [165, 306]. Recent
developments have made eye tracking more affordable, portable, and reliable. Modern algo-
rithms can track eyes using webcams almost as fast and accurately as commercial tracking
technologies [165, 256, 302]. The most common application of eye tracking is to direct con-
trol a mouse cursor using eye movements [306]. While the idea of performing tasks simply by
looking at the interface is empowering, eye tracking has yet to become a pervasive technology
due to the “Midas Touch” problem [139], which refers to the classic eye tracking problem
where the system cannot distinguish between users simply scanning the items versus their
intention to select them, resulting in unwanted selections wherever the user looks, making
the system unusable. One solution to this problem is to use a different action to activate
selection. The most commonly used selection method with eye tracking is dwell, where users
look at a target for 100–3,000 ms [112] to select it. It is, however, difficult to pick the most
effective dwell time for a population since a short dwell time makes the system faster but
increases false positives, while a long dwell time makes the system slower and causes users
physical and cognitive stress [37, 112]. Many alternatives have been proposed to substitute
dwell, including head and gaze gestures, blinking, voluntary facial muscle activation, brain
signals, and foot pedals. Most of these approaches either use external, invasive hardware
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that are not yet scalable in practical situations or exploit unnatural behaviors that can cause
users irritation and fatigue [138]. Speech is promising but not reliable in noisy places (e.g.,
when listening to music). Users are also hesitant to use speech when in public places (e.g.,
in a library) [82, 86, 84, 235]. Besides, speech does not work well with people with severe
speech disorders since it relies on the sound produced by the users [7, 43].

In this chapter, we investigate silent speech as an alternative selection method for eye-
gaze pointing. First, we propose a stripped-down image-based model that can recognize
a small number of silent commands almost as fast as state-of-the-art speech recognition
models. Second, we design a silent speech-based selection method and compare it with other
hands-free selection methods, namely dwell and speech, in a Fitts’ law study. We follow-up
on this by conducting another study investigating the most effective screen areas for eye-gaze
pointing in terms of throughput, pointing time, and error rate. Finally, we design a silent
speech-based menu selection method for eye-gaze pointing and evaluate it in an empirical
study.
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Figure 8.1: The architecture of the proposed silent command recognition model. It pre-
processes a sequence of T frames for mouth-centered cropped images to extract key frames.
The key frames are fed to a 1-layer 3D CNN, followed by a 34-layer 2D SE-ResNet for
spatiotemporal feature extraction. The features are then processed by two Bi-GRUs, a
linear layer, and a softmax. Finally, the softmax output is decoded with a left-to-right beam
search using the Stanford-CTC decoder.

8.1 A Model for Silent Command Recognition

We customized an existing silent speech recognition model LipType [see Chapter 6] to rec-
ognize silent commands. We did not use an off-the-shelf recognizer since they are optimized
for recognizing phrases, thus trained on large corpora (≥1,000 phrases [66]). This increases
the variability and ambiguity in lip movements (similar movements for different characters),
which are disambiguated in post-processing using language models [25],[see Chapter 6]. This
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affects both speed and accuracy. State-of-the-art silent speech recognition models can take
up to 5,000 ms to recognize one word with accuracy rates between 53–96% [see Chapter
6]. Since voice assistants usually use a small number of words as commands, we used a
smaller set of words that can be distinguished based on mouth aspect ratios (MAR) and
scraped off all word and phrase-level language models. The proposed model consists of three
sub-modules: a key frames extraction frontend that takes a sequence of video frames and
extracts key frames to create a compact representation, a spatiotemporal feature extraction
module that takes a sequence of key frames and outputs one feature vector per frame, and
a sequence modeling module that inputs the sequence of per-frame feature vectors to recog-
nize a keyword. The model is capable of mapping variable-length video sequences to text
sequences. Fig. 8.1 illustrates the architecture of the model.

Module 1: Key frames extraction. This module crops one w:100 × h:50 pixels mouth-
centered image per video frame to extract key frames. The module pre-processes each video
clip with the DLib face detector [157] and the iBug face landmark predictor [251] with 68
facial landmarks (L) and Kalman filtering (Fig. 8.2, left). Then, mouth-centered cropped
images are extracted by applying affine transformations. These images are used to measure
MAR by dividing the distance between the upper and the lower lips (h) with the distance
between the left and the right corners of the mouth (w) (Eq. 8.1). All frames with a MAR
greater than 20 are considered as key frames and the remaining frames are discarded to reduce
computation time. This threshold was picked based on an ablation study that revealed that
a MAR greater than 20 is sufficient to distinguish between words in a corpus with 10 words
(Fig. 8.2, right).

MAR =
‖L61 − L56‖+ ‖L60 − L57‖+ ‖L59 − L58‖

2 ∗ ‖L44 − L50‖
(8.1)

Module 2: Spatiotemporal feature extraction. This module passes the extracted key
frames to a 3D-CNN with a kernel dimension of T :3×W :5×H:5, followed by Batch Normal-
ization (BN) [133] and Rectified Linear Units (ReLU) [6]. Then, the extracted feature maps
are passed through a 34-layer 2D SE-ResNet to gradually decrease the spatial dimensions
with depth until the feature becomes a single dimensional tensor per time step.

Module 3: Sequence modeling. This module processes the extracted features using two
Bidirectional Gated Recurrent Units (Bi-GRUs) [61]. Each time-step of the GRU output
is processed by a linear layer and a softmax layer over the vocabulary, and an end-to-end
model is trained with connectionist temporal classification (CTC) loss [107]. The output is
then decoded with a left-to-right beam search [64] using the Stanford-CTC decoder [183] to
recognize spoken keywords.
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Figure 8.2: From left, lip landmarks detected by DLib and iBug [157], and average mouth
aspect ratios (MAR) of the ten keywords.

8.1.1 Training and Implementation

We trained the model for ten keywords: Press, Select, Left, Right, Top, Bottom, Reverse, For-
ward, Open, Close, with the data collected from 20 participants: 9 female, 11 male, average
age 26.95 years (SD = 3.03). The data collection process occurred remotely. Participants sat
in front of their computers and silently spoke each keyword in a random order for 50 times
(20 participants × 10 keywords × 50 repetitions = 10,000 samples). We enabled them to
use the embedded cameras to increase the variability of the dataset. They were instructed to
take 1–2 minutes breaks between the words and ∼3 seconds breaks between the repetitions
to reduce the effects of fatigue. A researcher guided them and observed the whole process
via a videotelephony system. Before training, we pre-processed the data by applying a hor-
izontally mirrored transformation, color space augmentations, and random cropping on the
cropped mouth images, resulting in 42,981 samples in total (4,290/keyword). We augmented
the dataset with simple transformations to reduce overfitting. The number of frames was
fixed to 75. Longer image sequences were truncated and shorter sequences were padded with
zeros. We applied a channel-wise dropout [274] of 0.3. The model was trained end-to-end by
the Adam optimizer [159] for 60 epochs with a batch size of 50. The learning rate was set to
10−3. The network was implemented on the Keras deep-learning platform with TensorFlow
[1] as the backend. Wll models were trained and tested on an NVIDIA GeForce 1080Ti GPU
board.

8.1.2 Performance Evaluation

We conducted a study to compare the performance of the proposed silent command model
with a state-of-the-art speech (Google Speech-to-Text API [103], Kaldi (Api.ai) [234]) and
silent speech (LipType [see Chapter 6]) recognition models to determine if it is reliable
enough as a selection method in gaze-based interfaces. Twelve volunteers participated in the
study (M = 27.67 years, SD = 2.77). Six of them identified themselves as female and six
as male. None of them took part in the data collection process. In the study, participants
either spoke or silently spoke (counterbalanced) each keyword for 12 times in a random
order (12 participants × 2 methods × 2 models × 10 keywords × 12 repetitions = 5,760
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Table 8.1: Average recognition time (seconds) and accuracy rates (%) for the investigated
models.

Metric Method Press Select Left Right Top Bottom Reverse Forward Open Close

Time

Google 1.73 1.64 1.65 1.54 1.69 1.82 1.82 1.68 1.65 1.61

Kaldi 2.27 2.17 2.30 2.19 2.10 2.02 2.08 2.13 2.33 2.14

Command 1.99 1.96 2.04 1.90 2.09 2.03 1.88 1.76 2.04 1.96

LipType 3.09 3.28 2.95 3.24 3.02 3.09 3.18 3.15 3.09 3.38

Accuracy

Google 97.92 97.71 98.11 98.36 98.18 97.42 98.15 98.53 97.97 97.82

Kaldi 88.05 88.65 90.19 87.48 89.04 88.41 85.83 88.04 89.62 88.02

Command 77.12 79.36 73.44 72.48 72.37 71.91 71.84 72.76 79.52 76.18

LipType 87.51 87.55 85.89 86.86 88.57 89.06 87.31 88.24 86.04 88.86

samples). A custom web application, developed with HTML5, CSS, PHP, and JavaScript,
presented one keyword at a time, processed and displayed the recognized word on the screen,
then presented the next keyword. The application was loaded on a Chrome web browser
v92.0.4515.131 running on a MacBook Pro 16′′ laptop with 2.6 GHz Intel Core i7 processor,
16 GB RAM, 3072×1920 at 226 ppi. Its built-in FaceTime HD webcam (1.2 megapixel with
1,280×720 pixel resolution) was used to track lip movements. The application automatically
calculated and recorded recognition time (seconds): the average time to recognize a word
and accuracy rate (%): the average percentage of words accurately recognized by a model.

8.1.2.1 Results

On average, Google Speech-to-Text and Kaldi took 1.68 seconds (SD = 0.27) and 2.17
seconds (SD = 0.42), respectively, to recognize the keywords, whereas LipType and Silent
command took 3.14 seconds (SD = 0.39) and 1.97 seconds (SD = 0.34), respectively. The
differences were statistically significant (F3,11 = 159.65, p < .0001). The average accuracy
rates for Google Speech-to-Text and Kaldi were 97.91% (SD = 1.15) and 88.32% (SD = 5.11),
respectively, whereas 87.58 (SD = 5.22) and 73.47% (SD = 7.33) for LipType and Silent
command, respectively. The differences were statistically significant (F3,11 = 506.53, p <
.0001). Table 8.1 presents recognition time and accuracy rates for all keywords with each
method. Within the investigated models, we selected the relatively best-performed models
for speech and silent speech recognition: Google Speech-to-Text and Silent command. Silent
command was almost as fast as Google Speech-to-Text (1.97 vs. 1.68 seconds) but was about
24% more error prone. However, this rate was recorded in a quiet room, while research
showed that the accuracy rate of speech drops by 45–55% in presence of a background noise
(42–58 db) [see Chapter 6]. The performance of silent speech, in contrast, is unaffected by
this. Besides, an ablation study showed that the accuracy rate of the proposed model further
improves with a much smaller corpus or a larger training dataset. The model reached a 100%
accuracy rate with 1 keyword and close to 95% accuracy rate with 6 keywords, which are
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acceptable in the context of speech and silent speech input [see Chapter 3]. In this work, we
use 1 keyword: Select, during the Fitts’ law study, and the 6 most relevant keywords: Select,
Left, Right, Top, Bottom, Close, in the menu selection study.

8.2 Eye Tracking

This work uses the GazeCloudAPI for real-time eye-tracking using a webcam [95]. It tracks
eyes in three stages: facial features extraction, eyes features detection, and point of gaze
estimation. The process starts with capturing RGB color space images with a web camera
and converting them to grayscale. These images are then normalized with histogram equal-
ization to enhance facial feature accuracy [102]. Afterward, a Haar-like feature classifier
is used to classify the images into face and non-face regions [289]. The classifier further
classifies the face into subregions, such as the eyes, the nose, the lips, etc. Once the eye
region is detected, the system first identifies the position of the pupil by detecting the iris
from the eye region. Then, locates the pupil as the center of the iris using a Hough circle
transform [155]. Finally, the point of gaze is estimated using the pupil location [98]. In an
empirical evaluation [285], the API yielded 0.9◦, 1◦ accuracy on the x, y coordinates with a
Logitech Pro 9000 Webcam at 1600×1200, where participants could freely move their head.
Note that eye tracking accuracy is measured in angles, representing the deviation in degrees
between the actual and the predicted gaze directions. An average below 1.2◦ is considered
to be a good measurement of accuracy in free head conditions, while an accuracy below 0.8◦

is desired when the head is fixed using a chinrest [285].

(a) The 2D Fitts’ law task in ISO 9241-9
(b) A screenshot of the web application (A =
780,W = 140 pixels)

Figure 8.3: (a) The target is highlighted in red. The arrows and the numbers demonstrate the
sequence in which the targets are selection. (b) The custom web application also highlights
the intended target in red and uses the same selection sequence as ISO 9241-9.
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8.3 Fitts’ Law Protocol

Fitts’ law is a well-established method for evaluating target selection on computing systems
[186]. In the 1990s, it was included in the ISO 9241-9 (revised: ISO 9241-411) standard for
evaluating non-keyboard input devices by using Fitts’ throughput as a dependent variable
[269]. The most common multi-directional protocol evaluates target selection movements
in different directions. The task is 2D with targets of width W equally spaced around the
circumference of a circle (Fig. 8.3a). Participants select the targets in a sequence moving
across and around the circle, starting and finishing at the top target. Each movement covers
an amplitude A, which is the diameter of the layout circle. A trial is defined as one target
selection task, whereas completing all tasks with a given amplitude is defined as a sequence.
Throughput cannot be calculated on a single trial because a sequence of trials is the smallest
unit of action in ISO 9241-9. Traditionally, the difficulty of each trial is measured in bits
using an index of difficulty (ID), calculated as follows:

ID = log2(
A

W
+ 1)

The movement time (MT ) is measured in seconds for each trial, then averaged over the se-
quence of trials. It is then used to calculate the performance throughput (TP ) in bits/second
(bps) using the following equation:

TP =
ID

MT

The revised ISO 9241-9 (9241-411) used here [132] measures throughput using an effective
index of difficult IDe, which is calculated from the effective amplitude Ae and the effective
widthWe to make sure that the real distance traveled form one target to the next is measured.
It also takes into effect how far the participants were from the target center.

TP =
IDe

MT
IDe = log2(

Ae
We

+ 1)

The effective amplitude is the real distance travelled by the participants and the effective
width is calculated as follows, where SDx is the standard deviation of the selection coordi-
nates projected on the x-axis for all trials in a sequence. This accounts for any targeting
errors by the participants, assuming that they were aiming at the center of the targets.

We = 4.133 ∗ SDx

8.4 Experimental System

We developed a custom web application1 with HTML5, CSS, PHP, and JavaScript for the
Fitts’ law study protocol (Section 8.3). It enables users to control a cursor with eye-gaze

1Based on an existing application: http://simonwallner.at/ext/fitts.

http://simonwallner.at/ext/fitts
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by translating gaze position into x, y coordinates of the cursor on the display. It uses the
GazeCloudAPI for eye-tracking with a webcam (Section 8.2). We used it instead of other
APIs [302, 220] due to its robustness [295]. The application uses the following free-hand
target selection methods.

• Dwell. Users point at a target then fixate (or hold the sight) for 500 ms to select
the target. The threshold was picked based on studies identifying 500 ms as the most
effective dwell time for novice eye-gaze users [205, 51, 185].

• Speech Command (Google). Users point at a target then speaks the voice command
Select to select the target.

• Silent Speech Command. Users point at a target then silently speaks the command
Select (without vocalizing the word) to select the target.

8.5 User Study 1: Fitts’ Law

We conducted a Fitts’ law study to investigate the performance of different hands-free se-
lection methods (dwell, speech, silent speech) with eye tracking.

8.5.1 Participants & Apparatus

Twelve volunteers participated in the user study. Their age ranged from 24 to 40 years (M =
29.01, SD = 4.78). Four of them identified themselves as women and eight as men. Four of
them wore corrective eyeglasses and one wore corrective contact lenses. One participant had
experience working with the MediaPipe Iris API, but none used eye tracking to interact with
their computer systems. Each of them received US $15 for volunteering in the study. We
used the web application described in Section 8.4 (Fig. 8.3b) and the apparatus described in
Section 8.1.2.

Figure 8.4: Three participants taking part in the first user study.
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8.5.2 Design

The study was a 3 × 3 × 4 within-subjects design. The independent variables and the levels
were as follows:

• Selection method (Dwell, Speech, Silent Speech) counterbalanced

• Amplitude (260, 520, 780 pixels)

• Width (35, 70, 140, 220 pixels)

The three amplitudes were selected based on the minimum and maximum distance pos-
sible on the experimental device’s 16′′ display. Likewise, the four widths were selected since
35 pixels is one of the smallest widths used in prior eye tracking research [199], 70 pixels is
the recommended width in eye tracking applications [287], while targets with widths over
220 pixels are unrealistic. The dependent variables in the study were as follows:

• Throughput (bps) as described in Section 8.3.

• Selection time (seconds) represents the average time users took to perform a selection
task, measured from the moment the cursor entered the target (including re-entries,
when the cursor mistakenly left the target, then re-entered) to the moment it was
selected. This metric does not include pointing time (seconds) that signifies the time
to move the cursor over a target as all selection methods used the same eye tracking
method for pointing.

• Error rate (%) signifies the average percentage of incorrect target selections per trial
(%), where users performed a selection action outside the target.

8.5.3 Procedure

The study was conducted in a quiet room. Upon arrival, we explained the research and
demonstrated the application to the participants. They then signed an informed consent
form and completed a short demographics questionnaire. We then calibrated the eye tracking
system for each participant by using a 4-point calibration method. The display was located
about 65–75 cm in front of the participants’ eyes (Fig. 8.4), as recommended in eye tracking
research [285]. After calibration, we enabled participants to practice with the application by
using the three selection methods for ∼5 minutes. They could extend the practice period on
request. Once familiar with the methods, they started the study by performing point-select
tasks by pointing at a target using eye tracking, then selecting it using either dwell, speech, or
silent speech. As per ISO 9241-411, the targets were highlighted one-by-one clockwise for all
levels, starting from the top target. The amplitude and width values were selected randomly.
As a target was selected, the next target was highlighted. We did not instruct participants to
fix their head, thus could freely move their heads during the study. We enforced a 2-minute
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break after each four sequences and a 5-minute break after each condition to avoid the effect
of fatigue. Upon completion of the study, participants completed a short questionnaire to
rate their willingness to use and perceived physical and mental efforts of the methods on a
5-point Likert scale. All researchers involved in this study were fully vaccinated for COVID-
19, wore face covering, and maintained a 3′′ distance from the participants at all times.
Participants were pre-screened for COVID-19 symptoms during recruitment and on the day
of the study. They wore face coverings at all times, except for when taking part in the
study. All study devices and all surfaces were disinfected before and after each session. This
protocol was approved by the Institutional Review Board (IRB).

8.5.4 Results

A complete study session took about 60–80 minutes, including demonstration, question-
naires, and breaks. A Shapiro-Wilk test revealed that the response variable residuals were
normally distributed. A Mauchly’s test indicated that the variances of populations were
equal. Hence, we used a repeated-measures ANOVA for all quantitative within-subjects fac-
tors (described in Section 8.5.2). We used a Friedman test for the questionnaire data [18].
We did not identify any effects of the between-subjects factors, namely age, gender, and the
use of corrective eyeglasses or contact lenses.

(a) (b)

Figure 8.5: Average throughput (bits/second) by (a) selection method and (b) selection
method, amplitude, and width. Error bars represent ±1 standard deviation (SD).

8.5.4.1 Throughput

An ANOVA identified a significant effect of selection method on throughput (F2,22 = 2367.84, p <
.0001). Average throughput for dwell, speech, and silent speech were 4.34 (SD = 1.79), 2.34
(SD = 0.68), and 2.59 bps (SD = 1.43), respectively (Fig. 8.5a). A Tukey-Kramer test
found the three selection methods significantly different from one another. There was also
a significant effect of amplitude (F2,22 = 189.88, p < .0001) and width (F3,33 = 487.72, p <
.0001). The method × amplitude × width interaction effect was also statistically significant
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(F12,132 = 225.83, p < .0001). Fig. 8.5b illustrates average throughput by selection method,
amplitude, and width.

(a) Selection time (seconds) (b) Error rate (%)

Figure 8.6: Average selection time and error rate by selection method. Error bars represent
±1 standard deviation (SD).

8.5.4.2 Selection Time

An ANOVA identified a significant effect of selection method on selection time (F2,22 =
1001.30, p < .0001). Average selection time for dwell, speech, and silent speech were 1.04
(SD = 0.30), 1.32 (SD = 0.20), and 1.37 seconds (SD = 0.17), respectively (Fig. 8.6a).

8.5.4.3 Error Rate

An ANOVA identified a significant effect of selection method on selection time (F2,22 =
3932.24, p < .0001). Average error rate for dwell, speech, and silent speech were 31.84% (SD
= 8.15), 23.95% (SD = 8.38), and 20.31% (SD = 7.88), respectively (Fig. 8.6b).

(a) Willingness-to-use (b) Physical and mental effort

Figure 8.7: Median willingness-to-use and physical and mental effort. Error bars represent
±1 standard deviation (SD).
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8.5.4.4 User Feedback

A Friedman test identified a significant effect of selection method on willingness-to-use (χ2 =
8.31, df = 2, p < .05). However, no significant effect was identified on physical and mental
effort (χ2 = 3.33, df = 2, p = .11). Fig. 8.7 presents median willingness-to-use and perceived
physical and mental effort ratings of the three methods.

8.5.5 Discussion

Results confirmed that target amplitude and width influence the selection methods in accor-
dance to the Fitts’ law (Fig. 8.5b), except for dwell’s unusual throughput for A:260×W :140,
which we identified as an outlier. Dwell was the best performed selection method in terms
of throughput. Its 4.34 bps throughput was 85% and 68% higher than speech and silent
speech (2.34 and 2.59 bps), respectively. However, it was also the most unreliable, which
is reflected in its average selection time (Fig. 8.6a) and error rate (Fig. 8.6b). Participants
took on average 1.04 seconds to select targets with dwell. Since the dwell time was set at
500 ms, this suggests that there were many target re-entries, where the cursor left the tar-
get before selecting it, thus had to re-enter, forcing participants to spend extra time with
the method. Fig. 8.8 illustrates cursor traces from a random participant for the three se-
lection methods, where one can see that dwell required much more target re-entries than
speech and silent speech. Dwell also yielded a 33% and 57% higher error rates than speech
and silent speech, which suggests that participants frequently dwelled outside the targets.
Dwell’s unreliability had an impact on user preference. Participants were least willing to use
the method and found it to be the most physically and mentally demanding (Fig. 8.7). One
participant (male, 28 years) commented, “Dwell was the most difficult because it was causing
eye fatigue”. This suggests that dwell can be useful in short-term use, but is likely to affect
user performance, preference, and comfort in extended use. Silent speech was the second
best performed selection method in terms of throughput. A Tukey-Kramer test found its
throughput to be significantly better than speech. Silent speech was also the most accurate.
A Tukey-Kramer test identified its error rate to be significantly lower than both dwell and
speech (36% and 15% lower, respectively). Participants were also willing to use the method
the most on their computers. They found it slightly more physically and mentally demand-
ing than speech (Fig. 8.7b), but this effect was not statistically significant. These results
identify silent speech as an effective selection method in eye-gaze pointing.

8.6 User Study 2: Screen Location

We conducted a user study to inform the design of the final study. Its purpose was to identify
the most effective screen areas for eye-gaze pointing, in terms of throughput, pointing time,
and error rate, which can essentially help designing more effective interactive systems for eye
tracking.
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(a) Dwell (b) Speech (c) Silent speech

Figure 8.8: Cursor trace examples for the three selection methods (A:520×W :70 pixels).

8.6.1 Participants

Twelve volunteers (M = 27.75 years, SD = 4.11) participated in the second study (Fig. 8.9b).
None of them participated in the first study. Six of them identified themselves as women
and six as men. Four of them wore corrective eyeglasses. None of them had experience with
an eye-gaze-based system. They all received US $15 for volunteering.

(a) (b)

Figure 8.9: (a) The twelve zones used in the second study and (b) two participants taking
part in the study.

8.6.2 Apparatus, Design, & Procedure

The study used the apparatus described in Section 8.1.2. To investigate the most effective
screen areas, the 1792×1041 display area (excluding the dock and the menu bar) was divided
into 12 equal 448×347 pixels zones (Fig. 8.9a). The application displayed circular targets (35
pixels in diameter) at random locations in the zones for the participants to select using silent
speech command. The study used the following within-subjects design: 12 participants ×
12 zones × 12 targets per zone = 1,728 targets. The independent variable was “zone” and
dependent variables were throughput, pointing time, and error rate (Section 8.5.2). This
study used the same procedure as the first study (Section 8.5.3) except for the task. In
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this study, participants performed the point-select tasks by pointing at a target using eye
tracking then selecting the target using the silent speech command Select. A sequence of
trials consisted of 12 circular targets (35 pixels in diameter) per zone. The targets were
presented at random locations in the zones (Fig. 8.9b). Hence, all trials had the same width
(W ) but different amplitudes (A). Upon completion of all trials, participants completed a
short questionnaire where they could rate the difficulty levels of the 12 zones on a 5-point
Likert scale.

(a) Throughput (bps) (b) Pointing time (seconds) (c) Error rate (%)

Figure 8.10: Average throughput, pointing time, and error rate per zone.

8.6.3 Results & Discussion

A complete study session took about 40–60 minutes, including demonstration, question-
naires, and breaks. A Shapiro-Wilk test revealed that the response variable residuals were
normally distributed. A Mauchly’s test indicated that the variances of populations were
equal. Hence, we used a repeated-measures ANOVA for the quantitative within-subjects
factors. We did not identify any effects of the between-subjects factors, namely age, gender,
and corrective eyeglasses.

An ANOVA identified a significant effect of zone on throughput (F11,121 = 4.37, p <
.0001). A Tukey-Kramer test identified three distinct groups: {1, 11, 12}, {4, 5, 7, 8, 9,
10}, and {2, 3, 6}, from the worst to the best performed zones. There was also a significant
effect of zone on pointing time (F11,121 = 8.93, p < .0001). A Tukey-Kramer test identified
three distinct groups: {1, 10, 11, 12}, {2, 3, 4, 5, 8, 9}, and {6, 7}, from the slowest to
the fastest performed zones. An ANOVA also identified a significant effect on error rate
(F11,121 = 4.16, p < .0001). A Tukey-Kramer test identified three distinct groups: {9}, {1, 4,
5, 8, 10, 11}, and {2, 3, 6, 7}, from the least to the most accurate zones. Fig. 8.10 illustrates
these.

In summary, the study identified the central zones {2, 3, 6, 7} as the most accurate
and the fastest. The top corners and bottom zones {1, 4, 9, 10, 12} were the most error
prone and the slowest. The remaining zones {5, 8, 11} performed moderately well. User
responses to the post-study questionnaire mirrored the quantitative data. We speculate,
this is due to the increase in participants’ viewing angle when looking at the top corners
and bottom zones. Prior work showed that eye tracking systems achieve the best accuracy
at narrow visual angles and even a slight increase in visual angles can increase gaze errors
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significantly [151]. Participants also expressed their enthusiasm about the system. One
participant (male, 29 years) wrote, “The technology felt good. It will be helpful to disable
people to simplify their life”. Another participant (female, 28 years) commented, “This could
be useful in self-checkout kiosk”.

8.7 Menu Selection with Eye-Gaze and Silent Speech

We designed a method for menu selection with silent speech and gaze pointing. It facilitates
the selection of small targets from a grid by adopting the target gravity metaphor from
traditional graphical user interfaces [216, 34] and using six silent speech commands for cursor
positioning and target selection. Target gravity uses a snap-to effect [216] that automatically
moves the cursor to a target’s center when it is within 10 pixels of the target, and then remains
locked on the target until the gaze path exceeds 10 pixels or the user silently speaks the
release command. We used this behavior because cursor drift and jitter during fixation due
to involuntary eye movements causes irritation and affects performance [206]. The 10 pixels
threshold was used because it felt the most natural in multiple lab trials. The method uses
two silent commands to select and close/release targets, and four commands for directional
movements of the cursor (Table 8.2). Fig. 8.11 illustrates a menu selection scenario with the
proposed system.

Table 8.2: The six silent commands and corresponding actions used in the proposed menu
section method.

Command Direction Action
Select Selects the current item

Right Horizontal
Moves the cursor to the right item. If there are no items on the right of the
current item, the cursor is moved to the first item in the menu

Left Horizontal
Moves the cursor to the left item. If there are no items on the left of the
current item, the cursor is moved to the last item in the menu

Top Vertical
Moves the cursor one item above the current item. If there are no items
above the current item, the cursor is moved to the last item in the menu

Bottom Vertical
Moves the cursor one item below the current item. If there are no items
below the current item, the cursor is moved to the first item in the menu

Close Unlocks the cursor by releasing target gravity

8.8 User Study 3: Menu Selection

We conducted a study to compare the silent speech-based selection method with and without
menu selection commands.
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Figure 8.11: A menu selection scenario with the proposed method. To select “Broccoli”,
the user starts scanning the horizontal menu from the left. The system locks the cursor on
the first item when the gaze is within 10 pixels of the item. The user silently speaks the
command “Select” to expand the current menu (display the sub-menu). The user silently
speaks “Right” to move the cursor horizontally to the next item. The user locates the
target, silently speaks “Bottom” to move the cursor to the target below the current item,
then silently speaks “Select” to select the target.

Figure 8.12: Three participants taking part in the final user study.

8.8.1 Participants & Apparatus

Twelve volunteers took part in the study. Neither of them participated in the first study.
Their age ranged from 22 to 36 years (M = 28.25, SD = 4.63). Six of them identified
themselves as women and six as men. Two of them wore corrective eyeglasses. None of
them had experience with an eye-gaze-based system. Each of them received US $15 for
volunteering in the study. The study used the apparatus described in Section 8.1.2.
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8.8.1.1 Task Selection

We customized the web application to display four menus (one at a time) categorizing dif-
ferent types of animals, food, popular books, and famous people. Simple categories were
used to assure that the selection tasks do not require specialized knowledge. All categories
had five vertical menu items. The vertical sub-menus under the horizontal menus had either
three, four, or seven items. We did not use more than seven items per sub-menu to avoid
memory overload [197]. Fifteen random targets were selected per category: five with target
distances between 2–5, five between 6–7, and five between 8–12. Target distance signifies
the total number of horizontal and vertical items before the target. Horizontal items are
counted from left to right and vertical items are counted from top to bottom since research
revealed that users tend to scan items from left-to-right and top-to-bottom [48]. The menus
were designed following the macOS guidelines [196] to provide a familiar look-and-feel. Each
menu item was 150×38 pixels. Current items were highlighted in a blue font (Fig. 8.13) and
selected items were highlighted in a dark gray background (Fig. 8.11).

Figure 8.13: Examples of two menus categorizing different types of animals and famous
people.

8.8.2 Design & Procedure

The study used the following within-subjects design: 12 participants× 2 methods (command,
menu command, counterbalanced) × 2 unique menus per method × 15 tasks per menu =
720 menu selection tasks. The independent variable was “method” and dependent variables
were as follows:

• Task completion time (seconds) represents the average time users took to perform
a menu selection task.

• Look-back rate (%) represents the average percentage of times users entered a correct
sub-menu, then left to explore the other sub-menus. This occurred when users were
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unable to locate a target despite entering the correct sub-menu, thus explored other
sub-menus to find the target.

• Error rate (%) signifies the average percentage of incorrect menu selections per
method (%), where users either selected an incorrect item or performed a selection
task outside the menu.

The study used the same procedure as the previous studies (Section 8.5.3). During prac-
tice, participants selected two items using both methods (with and without menu commands)
from a menu that was not used in the study. Once they were familiar with the methods,
they started the main study, where they performed 15 target selection tasks per menu cate-
gory with both methods. In the menu command condition, participants used the commands
presented in Table 8.2 for navigation and selection. In the command condition, they used
eye-gaze exclusively for positioning the cursor and the “Select” command to select a target.
Tasks with different distances were presented on the screen in a random order. Considering
some participants could be more familiar with the categories than the others, the application
also displayed the complete target path. For example, for the scenario depicted in Fig. 8.11,
the application displayed the task as “Select Veggies > Broccoli”, indicating that the par-
ticipants first have to go to the “Veggies” sub-menu then select “Broccoli”. Two menu
categories were assigned to each method in a counterbalanced order. We did not use the
same menu categories with both methods to avoid any potential effects of knowledge (using
the knowledge acquired in one condition to achieve the goals in another). Participants were
instructed to select the targets as fast and accurate as possible. Error correction was not
required. Timing started from the moment they lifted their gaze from the presented task to
the moment a sub-menu item was selected. We enforced a 2-minute break after each menu
category and a 5-minute break after each condition to avoid the effect of fatigue. Upon
completion of the study, participants completed a custom and the NASA-TLX questionnaire
[114] to rate the methods’ perceived performance, usability, and workload.

8.8.3 Results

A complete study session took about 40–60 minutes, including demonstration, question-
naires, and breaks. A Shapiro-Wilk test revealed that the response variable residuals were
normally distributed. A Mauchly’s test indicated that the variances of populations were
equal. Hence, we used a repeated-measures ANOVA for the quantitative within-subjects
factors. We used a Wilcoxon Signed-Rank test for the questionnaire data. [18] We did
not identify any effects of the between-subjects factors, namely age, gender, and the use of
corrective eyeglasses.

8.8.3.1 Task Completion Time

An ANOVA identified a significant effect of method on task completion time (F1,11 =
18.84, p < .005). Average task completion time for command and menu command were
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(a) Task completion time (sec-
onds)

(b) Error rate (%) (c) Look-back rate (%)

Figure 8.14: Average task completion time, error rate, and look-back rate for the two inves-
tigated methods. Error bars represent ±1 standard deviation (SD).

5.51 (SD = 1.09) and 5.02 seconds (SD = 1.07), respectively (Fig. 8.14a).

8.8.3.2 Error & Look-Back Rates

An ANOVA identified a significant effect of method on error rate (F1,11 = 265.30, p < .0001).
Average error rate for command and menu command were 51.11% (SD = 50.06) and 1.94%
(SD = 13.83), respectively (Fig. 8.14b). An ANOVA also identified a significant effect on
look-back rate (F1,11 = 1113.35, p < .0001). Average look-back rate for command and menu
command were 191.94% (SD = 143.25) and 5.00% (SD = 24.24), respectively (Fig. 8.14c).

(a) Usability questionnaire (b) NASA-TLX questionnaire

Figure 8.15: Median willingness-to-use and physical and mental effort of the examined se-
lection methods. Error bars represent ±1 standard deviation (SD).

8.8.3.3 User Feedback

A Wilcoxon Signed-Rank test identified a significant effect of method on perceived speed (z =
−2.45, p < .05), perceived accuracy (z = −2.16, p < .05), and ease-of-use (z = −2.22, p <
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.05). However, there was no significant effect on learnability (z = −1.06, p = .29) and
willingness-to-use (z = −1.3, p < .19). Fig. 8.15a presents median perceived performance
and usability ratings of both methods.

8.8.3.4 Perceived Workload

A Wilcoxon Signed-Rank test identified a significant effect of method on mental demand
(z = −2.61, p < .01), physical demand (z = −2.82, p < .01), temporal demand (z =
−2.83, p < .01), performance (z = −2.62, p < .01), effort (z = −2.95, p < .005), and
frustration (z = −2.98, p < .005). Fig. 8.15b presents median perceived workload ratings of
both methods.

8.9 Key Findings and Design Recommendations

Below, we summarize the key findings of this work and make design recommendations.

• Silent command is a fast and effective alternative to dwell and speech-based selection
methods in eye-gaze pointing, especially when the vocabulary is relatively small. We
recommend designers to present a small number of options at a time to limit the total
number of possible user responses to ten or less.

• We recommend against using dwell for tasks that require using the eyes for extended
period of time since it tend to affect user performance, preference, and comfort.

• When designing eye-gaze-based interactive systems, we recommend placing the most
important and frequently used interactive elements at the center or around the two
sides of the display. Avoiding the top corners and the bottom is recommended as they
are usually the slowest and the most error prone.

• We recommend using silent command for menu selection with eye-gaze pointing as
it is a more private and secure option and significantly increases users’ confidence in
selecting the correct option. Besides, vertical and horizontal menus are equally effective
in eye-gaze pointing with silent speech.

8.10 Discussion

Eye-gaze with menu command yielded about 9% faster task completion time than the base-
line (the method without menu command). Most impressively, it reduced error rates by 96%.
The baseline’s 51% error rate (compared to menu command’s 2%) suggests that roughly one
in every two targets were incorrectly selected (Fig. 8.14b). Menu command also yielded 97%
lower look-back rate than the baseline (Fig. 8.14c). The baseline yielded a 192% look-back
rate, which suggests that most of the times participants were not confident that they were in



CHAPTER 8. SILENT SPEECH IN EYE-GAZE POINTING 85

the correct sub-menu, thus left to explore the other sub-menus. This behavior is particularly
interesting since the study tasks did not require participants to explore the sub-menus to
locate a target, instead displayed the exact path. The fact that participants did not look-
back as much while using the menu command suggests that it increased their confidence in
performing the tasks. A deeper analysis failed to identify an effect of horizontal and verti-
cal (sub-)menu items on performance. This contradicts a prior work that found horizontal
pointing to be about 18% more error prone than vertical pointing [152]. We also failed to
identify any relationship between target distance and performance. This contradicts a prior
finding that users’ response time is an approximately linear function of serial position in the
menu [214]. Our findings, however, are in line with a follow-up work that failed to replicate
[214]’s findings and argued that visual search and cursor movement strategies employed by
actual users cannot be characterized easily [48].

Participants perceived the proposed method significantly faster and more accurate than
the baseline (Fig. 8.15a). A participant (female, 25 years) commented, “I think with com-
mands [gaze-based menu selection] is more reliable”. They also found the method signifi-
cantly easier to use. They felt that both methods were easy to learn. Interestingly, their
ratings were also comparable in terms of willingness to use. We believe, the exclusion of
error correction from the study protocol influenced this—their response could have been dif-
ferent if they were forced to correct all incorrect selections. Participants found the proposed
method mentally, physically, and temporally less demanding than the baseline (Fig. 8.15b).
They also felt that the method was better performed, required less effort, and caused less
frustration than the baseline.
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Chapter 9

Conclusion and Future Scope

This dissertation focused on investigating users’ impression towards using silent speech in-
put method on mobile devices from social acceptance, error tolerance, and feedback design
perspectives, followed by the investigation of technical challenges associated with existing
silent speech recognition models and solutions. Towards this, we first conducted an online
survey to explore users’ attitudes towards the speech and silent speech input methods with
a particular focus on social acceptance. In a survey, we found out that in general people
preferred using silent speech input over the traditional speech input. We also observed that
users were more comfortable using silent speech input in different public and private locations
but expressed their concerns about input recognition, privacy, and security issues.

Consequently, we conducted a study examining users’ error tolerance with speech and
silent speech input methods. Results reveal that users are willing to tolerate more errors
with silent speech input than speech input as it offers a higher degree of privacy and se-
curity. Inspired by the findings, we further investigate suitable feedback method for silent
speech input. Results show that users find both a commonly used video and an abstract
(a blinking dot) feedback effective but the latter significantly more private, more secure,
and less intrusive than the video feedback. We learned that designing solutions for silent
speech input requires careful consideration of various factors and privacy concerns as well as
people’s tolerance towards using it on computer systems.

As a step forward, we attempt to address the technological limitations of existing silent
speech recognition models. Towards this end, we develop LipType, an optimized silent speech
recognition model for improved speed and accuracy. In an evaluation, LipType reduced the
word error rate by 47% compared to the state-of-the-art silent speech recognition model.

We then develop an independent repair model that processes video input for poor lighting
conditions, when applicable, and corrects potential errors in output for increased accuracy. In
an evaluation, the repair model demonstrated it’s effectiveness with various speech and silent
speech recognition models. On average, speech and silent speech models showed 32% and 57%
reduction in word error rates, respectively, without compromising the overall computation
time. The findings confirm that the model can be used independently with a range of
recognizers.
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We conducted another study to explore how users interact with silent speech-based meth-
ods. Results revealed that native users speak about 8% faster than non-native users, but
both groups slow down at comparable rates (34–40%) when interacting with these methods,
mostly to increase their accuracy rates. A follow-up study confirms that slowing down does
improve the accuracy of these methods. Both methods yield the best accuracy rates when
speaking at 0.75x of the actual speaking rate. A post-hoc error analysis revealed that speech
and silent speech methods and native and non-native speakers are susceptible to different
types of errors. Native speakers committed 59% lower insertion errors, 11% higher deletion
errors, and 38% higher substitution errors than non-native speakers with speech. Whereas
with silent speech, they committed 81% lower insertion errors, 42% higher deletion errors,
and 16% higher substitution errors than non-native speakers. The findings of this study
highlight the importance of considering speaking rate in speech and silent speech-based in-
terfaces. While designing interfaces for these methods, the recognition algorithms must be
optimized for varying speaking rates and the characteristics of native and non-native speak-
ers. Error analysis presented in this work could be used to identify areas that require extra
effort to increase the respective method’s accuracy rates. The findings could also provide
guidance to users on improving speech and silent speech input performance.

Finally, we studied the feasibility of using silent speech as a hands-free selection method
in eye-gaze pointing on computer systems. We first propose a stripped-down image-based
model that can recognize a small number of silent commands almost as fast as state-of-the-
art speech recognition models. We then compare it with other hands-free selection methods
(dwell, speech) in a Fitts’ law study. Results revealed that speech and silent speech are
comparable in throughput and selection time, but the latter is significantly more accurate
than the other methods. A follow-up study revealed that target selection around the center
of a display is significantly faster and more accurate, while around the top corners and the
bottom are slower and error prone. We then present a method for selecting menu items with
eye-gaze and silent speech. A study revealed that it significantly reduces task completion
time and error rate.

In the future, we will extend the work to support more than ten silent speech commands.
We will also investigate the possibility of using targeted commands, where the user silently
speaks a specific menu item to select it rather than using directional commands. Finally, we
will explore different error correction mechanisms to enhance the usability of the method.
We envision numerous opportunities for future extension of this work. The proposed mouth
aspect ratio-based model could be trained with people with muteness and speech disorders
to enable hands-free interaction with computer systems using a set of custom commands or
even lip gestures. The model could also be used with conversational agents, e.g., chatbots.
Since they usually ask close-ended questions to limit the number of possible answers, the
system has to disambiguate the input from a small number of samples at a time, comparable
to the menu selection concept presented here. Eye tracking and silent commands could
also be used in other application domains, such as in virtual reality or in automotive user
interfaces.
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Appendix A

Test Dataset: Pretrained Model

In this appendix, we provide details about the selected phrases for seen and unseen data. For
seen data, we randomly selected 30 phrases from each pretrained models’ training dataset.
For unseen data, we randomly selected 30 phrases from MacKenzie and Soukoreff [187]
dataset, which is common for all models.

A.1 LipNet: Seen Data (Grid Data [66])

1. bin blue at c one again
2. set blue in f four soon
3. set blue with l eight now
4. bin green by a four soon
5. place blue by t nine soon
6. place red with a four please
7. place green by p five again
8. lay red with k seven soon
9. set blue in g four now

10. set red with m zero soon
11. bin white at q six soon
12. place blue at n six now
13. bin white with f seven soon
14. place blue at m seven now
15. bin red by j five please
16. bin white at a one please
17. set red by b one now
18. place blue at i one soon
19. place blue in n two please
20. lay red by d seven please
21. bin white by z three now
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22. place white with e three again
23. bin red in j four now
24. set blue in e four again
25. lay green at p four again
26. bin red with z eight please
27. place red with n two please
28. lay blue with b two please
29. set green with v eight now
30. bin white at j nine now

A.2 LipType: Seen Data (Grid Data [66])

1. set green at f four soon
2. bin green by h zero please
3. bin white at f zero again
4. place blue with j five again
5. place white in g two please
6. bin white by d eight again
7. bin blue in q seven please
8. lay red with f zero again
9. place white at p eight now

10. lay red with k three now
11. lay red in j one soon
12. lay white at j nine soon
13. lay red at v eight again
14. place green in u zero now
15. lay red with c eight again
16. place green at u two now
17. place white by v four now
18. bin red in x one now
19. bin green at e zero again
20. lay white by p six please
21. bin red with x nine again
22. place red at c three now
23. set green at o seven please
24. bin red at s eight again
25. place red in s three please
26. bin green by n four again
27. place green by y two please
28. place green by k one please
29. lay blue at c one please



APPENDIX A. TEST DATASET: PRETRAINED MODEL 118

30. place red by n one please

A.3 Transformer: Seen Data (LRS Data [5])

1. the whole gardens are extraordinary and
2. like hundreds of thousands of people do every year
3. but now there is more protection
4. we have a lot less atmosphere above us
5. and a couple of weeks ago
6. enjoy the summer
7. are they relatives of yours
8. no longer dependent on the sun
9. but the waldorf astoria

10. they would be able to go back
11. not just a hotel
12. not just in this town
13. every september this place would be transformed into what
14. now they are gathering
15. so from his vantage point
16. there is no air so there is no sound
17. with one of the rooms upstairs
18. maybe more of steel and iron
19. we have run out of time
20. before we all get too excited about that prospect
21. it can be quite expensive
22. in the form of a dessert plate
23. on the face of it
24. it could be your passport to a small fortune
25. some issues with potential damp
26. a great place for him to be
27. we have to pay for that
28. so rather than just relying on this information
29. all of the brain is combining all the different senses
30. he ordered them back inside

[noitemsep]
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A.4 DeepSpeech: Seen Data (Fisher

English-Conversational [62])

1. can you hear me okay by the way
2. oh good as long as you can hear me
3. yeah i can hear you
4. yeah that would be interesting
5. like ten minutes with a head set on i might as well exercise
6. yeah thats great
7. listening to the music anyway so um
8. i actually think its actually going out
9. fifth wheel dating show

10. i also watch that show the fifth wheel third and fourth wheel
11. and i have seen i remember when survivor first started
12. i saw that like a couple things
13. cause my roommate where watching it
14. yeah my roommates are you in college too
15. i am in graduate school
16. oh yeah okay i just graduated from um
17. first time graduate last year
18. and how about what school are you in
19. that was great performance tonight
20. it would be it would be cool to be on it
21. thats very cool
22. popular everyone talks about it
23. somebody from my high school one something too
24. he won he was like on that
25. greatest bachelor show
26. it was before these millionaire the millionaire guy ones
27. it was like a pageant for men
28. i didnt see it but i think i know what you were talking about
29. yeah he was in my old high school
30. going to rat on the other one

A.5 Kaldi: Seen Data (LIBRISPEECH Audiobooks

[218])

1. he was in a mood for music was he not
2. give not so earnest a mind to these mummeries child
3. a golden fortune and a happy life
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4. he was like my father in a way and yet was not my father
5. also there was a stripling page who turned into a maid
6. this was so sweet a lady sir and in some manner i do think
7. but then the picture was gone as quickly as it came
8. sister nell do you hear these marvels
9. take your place and let us see what the crystal can show you

10. like as not young master though i am an old man
11. he was going home after victory
12. it was almost buried now in flowers and foliage
13. But I wrestled with this fellow
14. but he saw nothing that moved no signal lights twinkled
15. and why should that disturb me let him enter
16. there was not a single note of gloom
17. boats put out both from the fort and the shore
18. his excellency madam the prefect
19. so i did push this fellow
20. what do i care for food
21. shame on you citizens cried he i blush for my fellows
22. surely we can submit with good grace
23. fine for you to talk old man answered the lean
24. at the same time every avenue of the throne was assaulted
25. vintage years have much to do with the quality of wines
26. come to me men here here he raised his voice still louder
27. dry and of magnificent bouquet
28. pour mayonnaise over all chill and serve
29. set into a cold place to chill and become firm
30. when thickened strain and cool

A.6 Wave2Letter: Seen Data (LIBRISPEECH

Audiobooks [218])

1. last two days of the voyage bartley found almost intolerable
2. i never dreamed it would be you bartley
3. the cuisine is the best and the chefs rank at the top of the art
4. he pulled up a window as if the air were heavy
5. it it hasnt always made you miserable has it
6. always but its worse now
7. it’s unbearable it tortures me every minute
8. i get nothing but misery out of either
9. there is this deception between me and everything
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10. he dropped back heavily into his chair by the fire
11. i have thought about it until i am worn out
12. after the very first
13. we never planned to meet and when we met
14. i dont know what becomes of the ladies
15. but now it doesnt seem to matter very much
16. presently it stole back to his coat sleeve
17. yes hilda i know that he said simply
18. i understand bartley i was wrong
19. season with salt and pepper and a little sugar to taste
20. you want me to say it she whispered
21. what alternative was there for her
22. its got to be a clean break hilda
23. oh bartley what am i to do
24. you ask me to stay away from you because you want me
25. i will ask the least imaginable but i must have something
26. you see the treatment is a trifle fanciful
27. he protected her and she strengthened him
28. and then you came back not caring very much
29. dont cry dont cry he whispered
30. a little attack of nerves possibly

A.7 Common Unseen Data (MacKenzie & Soukoreff

Dataset [187])

1. my watch fell in the water
2. prevailing wind from the east
3. never too rich and never too thin
4. breathing is difficult
5. I can see the rings on Saturn
6. physics and chemistry are hard
7. my bank account is overdrawn
8. elections bring out the best
9. you are a wonderful example

10. do not squander your time
11. do not drink too much
12. take a coffee break
13. popularity is desired by all
14. the music is better than it sounds
15. I agree with you
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16. do not say anything
17. play it again Sam
18. the force is with you
19. we went grocery shopping
20. the assignment is due today
21. what you see is what you get
22. for your information only
23. a quarter of a century
24. the store will close at ten
25. head shoulders knees and toes
26. always cover all the bases
27. this is a very good idea
28. can we play cards tonight
29. get rid of that immediately
30. public transit is much faster
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